
NAVAL POSTGRADUATE SCHOOL
Monterey, California

N lp STA4,

0 DTIG!RDU
N LCOT 0. -89A

'ThE4SIES
I

THE DESIGN AND IMPLEMENTATION OF A
SPECIFICATION LANGUAGE TYPE CHECKER

by

Robert George Kopas

June 1989

Thesis Advisor: Valdis Berzins

Approved for public release; distribution is unlimited

89 10 2 111

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
Ia Report Security Classification lb Restrictive Markings

Unclassified
2a Security Classification Authority 3 Distribution Availability of Report

2b Declassificaion/wngraing Schedule Approved for public release; distribution is unlimited.

4 Performing Organiztion Report Number(s) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization 6b Office Symbol 7& Name of Monitoring Orgwdzation

Naval Postgraduate School q(fApp lcabie) 52 Naval Postgraduate School
6c Addres (city, sate, and ZIP coce) 7b Addss (city, se. dad ZIP code)
Montere', CA 93943-5000 Monterey, CA 93943-5000
8a Name of Fonding/Spcnaong Organization 8b Office Symbol 9 Procuremant Instrument Identification Number

(If Applicable)

Sc Address (city. state, and ZIP code) 10 Source of Funding Numbers
Pmpn Elemm Number ProJeCt No Tesk No Wia& Uni Accwaon No

I i Title (Include Security Classqifcation)

The Design and Implementation of a Specification Language Type Checker
12 Personal Author(s)

Kopas, Robert G.
13a Type of Report 13b Time Covered 14 Date of Report (year, month day) 15 Page Count

Master's Thesis From To June 1989 219
16 Suppiementay Notaon The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government.

17 Cosati Codes 1 Subject Terms (continue on reverse if necessary and Mad&Wy by block number)

Field Group Subgroup , Specification Language, Type Checker, Attribute Grammar, Software
Engineering, SPEC Specification Language ,

19 ,Abstract (continue on reverse if necessary and identify by block number
The purpose of this thesis is to design a type checker for th,- SPEC language and to investigate its

implementation using an attribute grammar tool. SPEC is a formal language for writing black-box specifications
for large software systems. The type checker is a software tool which verifies the semantic accuracy of the

declarations and their uses in a SPEC source program. The design specifically addresses language features which
are especially important for large software system specification such as generic parameters, name and operator
overloading, subtypes, importation and inheritance. Additional discussion is provided concerning the handling of
the "non-block structured" nature of the specification language. This thesis implements two of the three aspects of
type checking--name analysis and error reporting. Additionally, a definitive framework is laid for the final aspect,
type consistency analysis.

33 Distnbution/Avadabixty of Abstract 21 Abstract Security Classification
_Ica, sified/aiined am as repor DTIC use Unclassified

22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol
Prof. Valdis Berzins (408) 646-2461 Code 523z

DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted secunrty classification of this page

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

The Design and Implementation of a Specification Language
Type Checker

by

Robert George Kopas
Lieutenant, United States Navy
B.S., Purdue University, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
JUNE 1989

Author: 4____.... Robert George Kopas

Approved by: ___________________

Valdis Berzins, Tbe~sAdvisor

Robert M6yhee, Chairman, Department of
Computer Science

Dean of Information Wr e

-- ,m mamal III I f BiBOP I I

ABSTRACT

The purpose of this thesis is to design a type checker for the SPEC language and to

investigate its implementation using an attribute grammar tool. SPEC is a formal

language for writing black-box specifications for large software systems. The type

checker is a software tool which verifies the semantic accuracy of the declarations and

their uses in a SPEC source program. The design specifically addresses language

features which are especially important for large software system specification such as

generic parameters, name and operator overloading, subtypes, importation and

inheritance. Additional discussion is provided concerning the handling of the "non-block

structured" nature of the specification language. This thesis implements two of the three

aspects of type checking--name analysis and error reporting. Additionally, a definitive

framework is laid for the final aspect, type consistency analysis.

iCCesiori For

NTIS CRaM
DrIC TAB

A-v

iii

TABLE OF CONTENTS

I. INTRODUCTION .. 1 p

A. OBJECTIVES ... 1
B. RESEARCH QUESTIONS 2
C. THE HISTORY AND SUCCESSFUL APPLICATIONS OF ATTRIBUTE

GRAMMARS TO SIMILAR PROBLEMS 2
1. The Context Free Nature of SPEC--A Pretty Printer 3
2. MSG.84 and MSG.85--A Translator for a Specification Language 4
3. The Design of a Compiler--Farrow 19844
4. Syn--A Graphical Representation of Bachus Naur Form 5
5. The Chameleon Architecture 5

D. A SPECIFICATION TYPE CHECKER AND "CASE"................. 6
1. Description of CASE 6
2. Benefits for CASE 6

II. BACKGROUND .. .7
A. TYPE CHECKER 7

1. Definition ... 7
2. Scope Considerations 8

B. ATTRIBUTE GRAMMARS8
1. Attribute Grammars 8

a. D efinition 9
b. Synthesized and Inherited Attributes 9
c. Semantic Functions 9

2. Automatic Parsing of Attribute Grammars--Application Generators 9
a. Definition and Overview 10
b. The Semantic Tree 11
c. Sem antic Analysis 11
d. Advantages and Disadvantages 11
e. Existing Application Generators 13

C. THE KODIYAK APPLICATION GENERATOR 13
1. Justification for use 13
2. A General Description of the Kodiyak Language 14

a Form at .. 14
b. Com m ents 15
c. Lexical Scanner Section 15
d. Attribute Declaration Section 18
e. The Attribute Grammar and Semantic Function Section 20

iv

f. Using the Kodiyak Translator 24
D. THE SPEC LANGUAGE 25

1. The Event M odel 25
2. The SPEC Language 29

a. Functions 29
b. State Machines 30
c. Types 31

M . SYSTEM DESIGN 35
A. SPEC LANGUAGE TYPE CONSISTENCY CONSTRAINTS 35

1. SPEC Language Semantic Issues 35
a. Definitions 35
b. Scoping 36
c. Naming Constraints 37
d. Type Consistency Constraints 38

B. CONCEPTUAL MODEL 39
1. Requirem ents 39
2. M odel .. 41

C. DESIGN CONVENTIONS 46
1. Attribute Naming 46
2. M 4 M acro Abstractions 47

a. Attrib-psg.m 4 48
b. M ym ac.m 4 51

(1) Declaration Group 51
(2) Symbol and Visibility Tables Group 51
(3) Attribute Evaluation Group 51

c. M yconst.m 4 51

IV. IMPLEMENTATION 52
A. SEMANTIC INFORMATION STORAGE STRUCTURES 52

1. M odule Types 52
2. Sym bol Table 53

a. Textual Names..................................... 54
b. Parameters 54
c. Resultse.. 55
d. Classes 55

3. Visibility Tables ... 56
a. Visible Types 56
b. Visible Names 56

B. MAJOR ATTRIBUTES 57
1. Error Reporting 57

V

a. verror-message 57
b. Declaration Errors 57
c. Error Concatenation 58

2. Building the Symbol Table 58
3. Extended Types .. 59 v

C. NAME ANALYSIS 59
1. Checking if an identical declaration exists60
2. Making a new declaration 60
3. Reporting an error 60

D. IDENTIFING ERRORS TO THE USER 61

V. EXTENSIONS ... 62
A. TYPE CONSISTENCY ANALYSIS 62

1. Seeking the Correct Symbol Table Entry 62
2. Obtaining a Symbol Table entry's type 63
3. Determining if an Operator is defined 63
4. Reporting Errors 63

B. SPECIAL SPEC LANGUAGE ISSUES 64

1. Inheritance & Instance Declarations 64
a. Preprocessor Usage 65
b. Error Reporting Drawback 65
c. Potential Advantages 65

2. Importation & Exportation 66
C. IMPROVED ERROR REPORTING 67
D. SUBTYPES ... 67
E. VARIABLE ARGUMENT OR PARAMETER LISTS 68

VI. CONCLUSIONS .. 69
A. INTEGRATION INTO A PROGRAMMING ENVIRONMENT 69
B. EVALUATION OF THE TYPE CHECKER 70

1. Kodiyak Deficiencies 70
2. Kodiyak Benefits 71

C. FUTURE W ORK 72
1. Extensions of the current implementation 72
2. Incremental Type Checking 72

D. GUIDELINES FOR EXTENDING KODIYAK 73

APPENDIX A - SPEC GRAMMAR 74

APPENDIX B - CODE 89
1. M A KEFILE ... 89

vTi

2. ATR SG.M4 89

3. M YM AC.M 4 95

4. MYCONST.M4 .. .97
5. HEAD.M 4 .. 98
6. TAIL.M 4 .. 98
7. M YLIB.C. 98
8. SPEC.M4..109g

APPENDIX C - SYNTACTIC ERROR PRODUCTIONS 174

APPENDIX D - TYPE CHECKER ATRIBUTES 200

REFERENCES 203

BIBLIOGRAPHY ... 205

INITIAL DISTRIBUTION LIST 207

vii

LIST OF FIGURES

2.1 Sample Lexical Definitions 16

2.2 Lexical Section Operators 17

2.3 Regular Expressions with Definition Expansion 18

2.4 Sample Attribute Declarations 19

2.5 Rule Template 20

2.6 Attribute Naming and Rule Concepts 21

2.7 Kodiyak Operators 22

2.8 Kodiyak "If..Then..Else" Construct 23

2.9 Kodiyak Functions 24

2.10 Function Example 30

2.11 M achine Example 31

2.12 Immutable Abstract Data Type 32

2.13 Mutable Abstract Data Type 34

3.1 Conflicting Name Bindings 40

3.2 Limiting Type Visibility 42

3.3 Localizing a M ap 44

3.4 Nam e Layering 44

3.5 Result Values Transitive Dependency 45

3.6 Passing Up an Attribute 49

3.7 Passing Down an Attribute to "n" Non-terminals 49

3.8 Passing Over an Attribute to "n" Non-terminals 50

3.9 Passing an Attribute in order to "n" Non-terminals 50

3.10 Weaving an Attribute to "n" Non-terminals 50

4.1 Example of a Pattern 54

viii

ACKNOWLEDGMENT

This thesis is dedicated to my loving wife, Sue. Thank you for all your patience and

understanding during the long hours devoted to its design, implementation and writing.

Most importantly, however, thank you for just being there and being you.

'i

ix

L INTRODUCTION.

The field of Software Engineering is a growing area of interest in computer science.

Many systems are currently being developed, using various methodologies, to support

large scale software development. One of these systems uses the functional specification

language SPEC to define the syntax and semantics of these projects. SPEC is a language,

developed by Berzins [Ref. 1], for writing black-box specifications for the components of

the software system in the functional specification stage of software development. To

increase the reliability of this code a type checking tool has been developed to

semantically validate the various type declarations used in the specification. This thesis

describes the methodology used and the actual implementation of this type checker.

A. OBJECTIVES.

The primary objective of this thesis is to design and implement a language dependent

type checker for the specification language SPEC. Appendix A and [Ref. 1] contain a

listing of the grammar for the SPEC language. The code for the type checker is written

entirely as an attribute grammar. This code is then compiled using the Kodiyak

Application Generator, producing executable code.

It is also desired that the type checker be easily modifiable in the event that

extensions are incorporated into the SPEC language. By using an attribute grammar to

,.. specify the program and an application generator to generate the code, the program can

-44 III I II

be modified with relative ease. The efficiency of the code is not a limiting factor,

because optimizations may be coded at a later date.

The final objective is to abstract the process used to develop the type checker and

develop an algorithm for producing type checkers for other specification languages. This

algorithm will be a direct result of the insight gained from the design and implementation

of the SPEC language tool.

B. RESEARCH QUESTIONS.

There are two pertinent research questions for this thesis. First, and foremost, what

are the underlying issues in the design and implementation of a type checker for a

specification language using an application generator? What is the impact of these issues

on portability, readability, modifiability and efficiency of the code?

Finally, how would this type checker be best integrated into a programming

environment? What facilities must this programming environment provide? Should the

type checker be optimized to provide better execution speed?

C. THE HISTORY AND SUCCESSFUL APPLICATIONS OF ATTRIBUTE
GRAMMARS TO SIMILAR PROBLEMS.

Attribute grammars are frequently used for specifying the semantic meaning of

source programming languages. Additionally, with the aid of application generators,

these grammars have been used to generate compilers and other tools for the recognition

and transformation of programs coded in these source languages.

I ! 1

1. The Context Free Nature of SPEC--A Pretty Printer.

All language grammars are classified by the complexity of the productions that

produce that language. The Chomsky Heirarchy, named after Noam Chomsky, divides

languages into four classes--type 0 (unrestricted) grammars, type 1 (context sensitive)

grammars, type 2 (context free) granimars and type 3 (regular) grammars. Type 0

grammars contain the set of all languages, type 1 contains a subset of that, etc. Of these

four classes, type 3 (context free) and type 4 (regular) are of the most interest in

programming language design because they can be used to describe the structure and

basic symbols of a program. Most standard computer languages in use today can be

described with a context free grammar since efficient parsing algorithms are known for

this class of languages. The SPEC specification language is described using a context

free grammar.

A thesis recently completed at the Naval Postgraduate School [Ref. 2] developed

a program using the Kodiyak application generator and an attribute grammar to print

SPEC specifications in a properly formatted / indented manner. The Kodiyak application

generator is a tool for converting context free attribute grammars into an executable

program. This "Pretty Printer" program demonstrated that SPEC is indeed context free

because the Kodiyak tool could convert the attribute grammar representation into

executable code which formats SPEC specifications. The thesis also demonstrated that

attribute gramnmars are - feasible way to create tools for the SPEC language.

,I3

. ., , I3

2. MSG.84 and MSG.85--A Translator for a Specification Language.

MSG.84 and MSG 85 are specification languages developed at the University of

Minnesota. They have been used extensively in software engineering classes for

specifying software systems. In the Spring of 1984, a translator was written to translate

these specifications into the Lisp-like DBL [Ref. 3] assertions. This translator, from

which the Kodiyak application generator evolved, revealed some design flaws in the

MSG language. These flaws were corrected and a translator now exists for the

conversions. Additionally, a reverse translator was written to convert the DBL assertions

produced into MSG. This process of translation and reverse translation insured that the

translation to DBL was "lossless" and that the semantic meaning of all the MSG

constructs was preserved.

3. The Design of a Compiler--Farrow 1984.

Attribute Grammars have long been championed as a promising basis for

compiler writing systems. Many different compiler-compilers such as Yacc [Ref. 4],

Linguist [Ref. 5] and Kodiyak [Ref. 6] have been developed. One of the major

drawbacks however, has been the inability of these compilers to compete in the

commercial market with those compilers produced by other means due to their memory

requirements and speed. The Pascal-86 compiler developed by Intel Corporation is based

on an attribute grammar and application generator. It was successfully marketed as a

production compiler and was developed in a two stage process. The first phase was

developed using the Linguist-86 application generator and performed semantic analysis,

storage allocation and translation to intermediate code. The second part of the compiler

4

takes the intermediate code produced by the semanticist unit and generated 8086

microprocessor object code. The compiler has been marketed succesfully and it was

noted that the development process was significantly enhanced due to the use of An

attribute grammar.

4. Syn--A Graphical Representation of Bachus Naur Form.

Syn is a translator developed with the Kodiyak application generator that

translates a grammar expressed in the Bachus Naur Form into directives in the PIC

graphics language. The translator required approximately two man-weeks of work to

implement by a user initially unfamiliar with the Kodiyak application generator [Ref. 6].

The significant time savings realized by the use of an application generator in the

development of this tool reaffirms that application generators are an effective tool for

developing large applications.

5. The Chameleon Architecture.

The Chameleon project [Ref. 7] is an ongoing project at Ohio State University

that is developing an architecture to support the specification, construction and use of

data translation tools. The architecture's primary tool is an application generator that will

take attribute grammar specifications and produce the tools needed to translate the data.

An application generator was choosen as the primary tool in this architecture due to the

readability and ease of understanding of the attribute grammar specifications.

40

5I

D. A SPECIFICATION TYPE CHECKER AND "CASE".

1. Description of CASE.

CASE is an acronym for Computer Aided Software Engineering, an area of

ongoing research at the Naval Postgraduate School. Some of the projects currently being

developed in this area include a Software Rapid Prototyping System, Syntax-directed

editors for SPEC and formatters for the SPEC language. Eventually, all of these tools

will be integrated into an environment to aid the software engineering process and

specifically ADA program development. It is also anticipated that this type checker and

its principles will be integrated with a syntax directed editor to build a superior editing,

type checking tool.

2. Benefits for CASE.

A type checker would be an extremely valuable addition to any CASE

environment. Since it has been proven that many design errors manifest themselves as a

type inconsistency, the type checker would assist in the identification of errors that could

defeat the reliability of the specification.

6t

[I. BACKGROUND.

A. TYPE CHECKER.

1. Definition.

A Type Checker is a tool used to validate the semantic accuracy of the uses and

declarations of name structures in a program. There are two types of type checkers

currently in use today. The kind of type checker used for a language is often dependent

on the features of that language. The first kind, a dynamic type checker, executes

concurrently with the program and checks the validity of dynamically declared variables

as they are encountered. Since this tool runs as part of the executable program, the

program performance is degraded and errors are reported during run time instead of

before the compile - link cycle.

The second kind of type checker is a static type checker. This tool takes as input

a file or multiple files containing the source program / specification and provides the user

with a report detailing any type inconsistencies that were discovered. It can be run before

a program is compiled and reports inconsistencies so that they may be corrected before

the compile - link cycle.

The process of validating the semantic accuracy of the structures in a program is a

multi-part process. The first part, called name analysis, entails finding the definition of

that name applicable to each use of the name. If there has been no definition of that

name, the type checker will either make a definition based on the name's use or report an

7

error. The other two phases deal with obtaining the operator being used and confiming

that the results of the name analysis are indeed allowable with the given operator.

Additionally, a type checker must consider various language features such as operator

overloading, name scoping and the binding method used.

2. Scope Considerations.

The scope of a name is the portion of the program over which it may be used

[Ref. 81. Many languages, called block structured languages, allow the nesting of various

names within themselves. The most recent occurence defining the currently available

definition of that name. Another constraint imposed by scope is whether or not a variable

is visible inside of the structures that are declared inside of it. Both of these constraints

and others must be considered in the design of the type checker.

B. ATTRIBUTE GRAMMARS.

1. Attribute Grammars.

Attribute grammars were introduced by Knuth [Ref. 9] and advocated as a means

of translating grammar specifications into executable code. They have been used

repeatedly to develop compilers, compiler-compilers (application generators) and other

useful tools. One of the most significant features of attribute grammars is their

readability. Attribute grammars are very similar to the Bachus-Naur form (BNF) of

representing the syntactic structure of a program and tends to be self-documenting since

they represent a relation between the syntax and semantics of the language.

8

a. Definition.

An attribute grammar is based upon a context-free grammar G = (N, T, P, Z)

and associates a set A(X) of attributes with each symbol, X, in the grammar G. The

context-free grammar is used to represent the syntactic structure of the language while

the attributes are used to represent context-sensitive (semantic) properties of the

language.

b. Synthesized and Inherited Attributes.

The attributes of an attribute grammar may be divided into two classes. The

first of these, synthesized attributes, are those attributes of symbols on the Left hand side

of a production that are derived from the return value of the elements on the right-hand

side of the production. Conversely, inherited attributes are those attributes of symbols

on the right hand side whose values are derived from the values of the attributes of the

symbols on the left hand side.

c. Semantic Functions.

Each rule in an attribute grammar has semantic functions associated with it

that define the values of some attributes in the production in terms of other attributes in

the function. These functions resolve the actions that the application generator takes

upon recognizing the production associated with them and define the values of all

inherited and synthesized attributes.

2. Automatic Parsing of Attribute Grammars--Application Generators.

Application generators have many different uses. They have been used frequently

for the implementation of compilers, the verification of the context sensitive constraints

9

on languages and are becoming popular for the design and implementation of various

other tools. One of their most significant advantages is that they let the user customize

and reuse a general software design easily.

a. Definition and Overview.

Application generators are tools that produce executable code from a grammar

specification. The executable program produced will model the semantic meaning of the

grammar specification precisely. The application generator consists of two parts, a

variant part and an invariant part. The invariant part consists of fixed assumptions about

the domain or implementation such as the source language. The variant part of the

application generator corresponds to the attribute grammar specification of the system

that is to be produced.

The process of using the application generator begins with the attribute

grammar specification. This specification is generally simpler, in both syntax and

semantics than the programming language it specifies. Acting mucfi like a language

compiler, the application generator takes this specification and produces code in some

invariant language (e.g., "C") which is then compiled with a standard compiler to

produce the executable application. An end-user may then take this executable

application and provide it with input from which the application will produce whatever

the original specification specified.

There are many different considerations in the choice of an application

generator for a specific task. The first and foremost of these is if the application

generator can perform the task desired. Other considereations include what built-in types

10

and operators are available in the applications generator, the readability of the

specification language (attribute grammar) used by the tool, the availability of the

generator itself and the attribute evaluation method.

b. The Semantic Tree.

The basic principle of operation behind an application generator and its

associated attribute grammar is that any program can be represented by a semantic tree.

This tree will contain nodes, the interior ones representing productions and the leaves

representing terminal symbols in the target language. Associated with each node is it's

attributes.

c. Semantic Analysis.

The process of evaluating each node in the semantic tree is called semantic

analysis. As the attributes of each node are evaluated, the semantic functions are

executed and any side-effects associated with them are performed. Different algorithms

have been derived for resolving the attributes in the semantic tree and most of them have

been implemented in at least one application generator. The choice of the algorithm

depends on the properties of the attribute grammar and the qualities desired in the

resultant product [Ref. 6]. To ensure that the translator produced by the application

generator performs exactly as desired, it is imperative that the method used to evaluate

the attributes be understood.

d. Advantages and Disadvantages.

Application generators produce tools that are more reliable than a conventially

coded tool because of their very nature. Since it accepts a specification of the tool to be

11

produced and uses well-known techniques, it is less likely to accept syntactically

incorrect input and generate unexpected output or terminate abnormally [Ref. 6]. Since

there is a close link between the syntax and semantics of the specification, the volume of

code required is reduced and it is more repairable. The application generator tends to be

self-documenting because its source code allows users to quickly determine the syntactic

requirements of programs. If an application generator is constructed properly it can be

very portable. Typically it can be written in its own language and it produces an

appropriate, portable target language, the application generator can be transfered to other

computers with relative ease.

The most important advantage of an application generator is its ability to cut

down on the time and cost to build a tool with it. Since a programmer's productivity is

largely constant in the number of lines of code produced per unit time [Ref. 101, a tool

that generates a program equivalent to a high level language program with less actual

lines of code will increase productivity. Additionally, since there is generally a close

correlation between the Bachus-Naur representation of the grammar and the specification

input to the application generator, the time involved in the development of the program is

decreased as it is with most fourth generation languages [Ref. 11].

A major drawback of application generators is that since they are table driven,

they tend to produce executable code that is not as efficient as equivalent "hard-coded"

tools. Additionally, since the value of the attributes used must be copied between

attributes so that these values may reach the root to be output, bulk is added to the

program's specification. Both of these problems are currently being researched. Some

12

solutions have been put forth. To reduce the number of copy rules (and thus increase

readability), a macro preprocessor may be used. Additionally, research has proven that

hard-coding the tables used during the evaluation process tends to produce a speedup

factor of 6-10% [Ref. 121.

e. Existing Application Generators.

Many different application 6,;nerators have been developed. Some of the

most popular include the HLP (Helsinki Language Processor) system [Ref. 13], Delta

[Ref. 14], Mug2 [Ref. 15], Aparse [Ref. 16] Gag [Ref. 17], YACC [Ref. 4], Linguist-86

[Ref. 5] and Kodiyak [Ref. 6]. Each uses a different algorithm for evaluating the

attributes of the semantic tree and accepts different classes of attribute grammars.

C. THE KODIYAK APPLICATION GENERATOR.

The Kodiyak application generator was developed at the University of Minnesota and

is intended for building prototype languages and translators. The specification describes

all aspects of translation: input scanning, parsing, semantic processing and output. It has

been used to build translators for other specification languages, text processing tools,

database query languages and a pretty printer for the SPEC language.

1. Justification for use.

Kodiyak is an exceptional language translator that integrates the functions of the

YACC [Ref. 4] parser generator and LEX [Ref. 18] scanner generator into a

comprehensive whole, hiding the procedural and interface details of these tools. Its

compact attribute grammar specification describes every aspect of the translation process,

produces portable "C" language code and then compiles that into executable code.

13

Additionally, Kodiyak can process it's input through a macro-preprocessor allowing

repetitive code to be replaced by a single statement thus improving a programs'

readability. Kodiyak allows evaluation of the largest class of attribute grammars and

contains built-in types capable of specifying symbol tables. Its many features,

capabilities, portability, and availability make it an ideal tool for the implementation of

this thesis.

2. A General Description of the Kodiyak Language.

All of the points covered in the following section come directly from Appendix A

of Herndon [Ref. 6] Kodiyak Program Layout. It is intended to describe the operation of

the Kodiyak translator in sufficient detail to facilitate understanding of the type checker

code. It is not intended to be a detailed reference. If further or more detailed information

is needed it is recommended that Hemdons' doctoral dissertation [Ref. 6] be consulted.

a. Format.

Every Kodiyak program has three sections. The first section describes the

features of the lexical scanner that is to be used to translate the source text into tokens

and operator precedences and associativities for those tokens. The second section

declares the names and types of the attributes associated with each grammar symbol.

The third section contains the grammar and attribute equations that define the translation.

These sections are separated by a double percent symbol ("%%") on a line by itself.

14

b. Comments.

There are two forms of comments in Kodiyak. The first is the C and PL/I

style comment delimined by "/*" and "*/". The second is introduced by an exclamation

point "!" and continues to the end of the line.

c. Lexical Scanner Section.

Each statement in the lexical section of a Kodiyak program describes the

terminal symbols of the translation in some way. The primary function of statements in

this section is to specify the terminal symbols of the grammar, and how input text is to be

transformed into these symbols. The secondary function of this section is to specify a set

of operator precedences to be used with the grammar.

The transformation of input text to terminal symbols is denoted by a regular

expression. Figure 2.1 shows examples of lexical definitions. These definitions are an

excellent sampling of the typical definitions. The first definition demonstrates the

general format of a lexical definition. The second definition demonstrates how a specific

string can be recognized and the third definition shows how a changeable string of text,

such as a variable name, may be recognized. The rules are examined in the way they are

listed, thus implying precedence. The first rule that is recognized will determine the

terminal symbol (token) that will be returned.

15

TERMINALNAME REGULAREXPRESSION

Format for a lexical definition.
A Terminal-name is specified by the Regular-expression.

BEGIN "BEGIN" I "begin"

The terminal symbol BEGIN is recognized if either "BEGIN" or
"begin" is scanned L-om the input.

ID :[A-Za-z][A-Za-zO-9]*

The terminal symbol ID is recognized if a string starting with
an alphabetic character followed by zero or more alphanumeric
characters is scanned from the input.

Figure 2.1
Sample Lexical Definitions.

Operator characters are an extremely important part of any regular expression.

They allow ways for specifying choices, repeating characters and ranges of characters.

All valid operator characters used in Kodiyak regular expressions are enumerated in

Figure 2.2. If you desire additional information on construction of regular expressions

and further examples, the original Lex documentation [Ref. 18] provides an authoritive

source.

16

Opetor Symbol Meanin2

Delimiter between Token name and regular expression.

By preceding an operator character with the backslash, the
operator will be recognized as a text character.

Whatever is contained between a pair of quotes is text characters.

[1]Indicates a character class. Any character between the brackets
will be recognized. The only operator symbols having meaning
between brackets are "-", "N" and "^"

If the Caret Symbol appears outside of a set of brackets, the
string fdllowing it must appear at the beginning of a line
to be matched. If it appears as the first character after a
left bracket, it indicates that the resulting string is to be
complemented. (i.e. [Aabc] matches everything except ab or c.

+ Symbolizes an expression that is to be repeated one or more times.

* Symbolizes an expression that is to be repeated zero or more times.

I Indicates alternation. It may be interpreted verbally as an "or".

Parenthesis are used for grouping.

$ If the very last character of a regular expression is the dollar
sign, the expression will only be matched at the end of a line.

The forward slash between two regular expressions means that the
terminal symbol is only matched if the first regular expression
is immediately followed by the second regular expression.

The question mark precedes an optional part of an expression.

The dash operator specifies ranges.

The period operator matches any character.

(} Curly Braces specify either repetition or definition expansion.

Figure 2.2
Lexical Section Operators.

17

Kodiyak also provides ways to increase the readability of regular expressions.

By defining the basic lexical classes (digits, alphabetics, integers, etc.), the regular

expressions may be made more readable. Figure 2.3 provides an example of this feature.

%define Letter : [a-zA-Z]

%define Int : (Digit)+

%defne Alphanum : [{Digit) (Letter)]

COMMENT

NAME : (Letter) (Alphanum}*

Figure 2.3
Regular Expressions with Definition Expansion.

d. Attribute Declaration Section.

The attribute declaration section of a Kodiyak program declares the attributes

used in the program and their types. In this version of Kodiyak, no other statements may

be present in this section, though it is expected that declarations of constant functions and

external functions and procedures will eventually be allowed in this section.

Kodiyak supports two primitive data types for attributes: strings and integers.

Strings may have arbitrary length and may be concatenated to form longer strings. All

simple mathematical functions (i.e., addition, subtraction, multiplication and division)

may be applied to integers.

Kodiyak also supports higher order types. These types are called maps, and

define functions that may map any primitive type to any other type. Maps are extremely

flexible and important to the type checker. They can be mapped onto other maps to form

18

something similar to high level languages record structures. Figure 2.4 shows a some

sample attribute declarations.

ID
type string;
%text string;
%line :int;
value int;

EXPR
type :string;
e_valid string -> int;

Figure 2.4
Sample Attribute Declarations.

This figure declares that four attributes (type, %text, %line and value) are to

be associated with the grammar symbol ID and that two attributes (type and e_valid) are

to be associated with expressions (EXPR). Furthermore, attributes type and %text are

attributes that may take on string values; %line and value may take on integer values and

attribute evalid is a map from a string ("true" or "false") to an integer value (1 or 0).

Figure 2.4 also demonstrates two very important concepts in Kodiyak. First,

since an identifier (ID) is normally a terminal symbol and an expression (EXPR) is a

non-terminal, both terminals and non-terminals can have attributes. Secondly, terminal

symbols can have two special, predefined attributes associated with them, "%text" and

"%line". These attributes are initialized when the terminal symbol is recognized to be the

actual text scanned and the input line on which the text was found.

19

e. The Attribute Grammar and Semantic Function Section.

The final section of a Kodiyak program defines the syntax and semantics of

the translation. It consists of a set of rules and sets of equations defining evaluation rules

for the attributes. There is one distinct start symbol for the rules and it is defined as the

symbol on the left hand side of the first rule in the grammar. This symbol is unique and

it may not appear on the right hand side of any rule in the grammar.

Rules in Kodiyak are defined in a form that is very similar to Bachus-Naur

Form (BNF). Figure 2.5 defines a rule which specifies that the non-terminal symbol

"non" will be recognized if the symbols "syml", "sym2" and "sym3" appear in sequence.

Additionally, if the symbol "non" is recognized, the semantic functions defined between

the curly braces will be computed during the attribute evaluation process.

non: syml sym2 sym3

semantic functions go here.

Figure 2.5
Rule Template.

The semantic functions must have a way of specifying exactly what attributes

are to be used during the determination process. In Figure 2.6 one rule has been used to

demonstrate the three different ways of accessing the same attributes. In the first part of

the rule, a production allowing an expression to be recognized when two expressions are

separated by a plus ("+") sign is detailed. Associated with it is a semantic function

stating the value attribute of the expression on the left hand side of the rule (specified by

20

the "$$.value" notati6,.) will be assigned the contents of the first expression's value

attribute ("$L.value") added to the contents of the second expression's value attribute

("$3.value"). The second and third notation show the exact same effect using

subscripting. In these examples, the subscript refers to each occurence of the non-

terminal. If a subscript is left out, as in the second notation, the non-terminal is assumed

to refer to the non-terminal on the left hand side of the equation.

expr expr '+' expr
{
$$.value = $S.value + $3.value

I

expr '-' expr

expr.value = expr[2].value - expr[3].value
I

expr '*' expr %prec multiply

expr[l].value = expr[2].value * expr[3].value

Figure 2.6
Attribute Naming and Rule Concepts.

Kodiyak has a rich set of operators. Besides the various arithmetic and string

operators detailed previously, it also provides nine logical operators. Figure 2.7

enumerates all of the operators that are presently available.

21

Operator Sybol Meaning.

* Multiplication

Subtraction

/ Division

A Concatenation

II Cncatenation

< Lesw han

> Greater than

Equal to

<> Not equal to

<= Less than or equal to

>= Greater than or equal to

&& Logical and

Logical Or

Logical negation
Figure 2.7

Kodlyak Operators.

Kodiyak also provides a means of specifying a statement equivalent to the

"IF" construct used in high level languages. This construct has different syntax than most

languages, but is logically equivalent. Figure 2.8 demonstrates this construct using the

'expr" rule introduced in Figure 2.6.

22

expr expr '/' expr

$$.value = ($3.value <> 0
-> $1.value/ $3.value
s2i("O")

Figure 2.8
Kodlyak "If..Then..Else" Construct.

The above example assigns to the value attribute of the left part symbol the

contents of the first expression divided by the contents of the second expression if the

contents of the second expression are not equal to zero. If the second expression's

contents are equal to zero, a value of 0 is assigned to the resultant expression's "value"

attribute. The "else" ("#") clause also introduces another very important feature of

Kodiyak--built in functions. In Figure 2.8, the string to integer ("s2i") function was

called to convert a string value into an integer. Kodiyak's standard functions are

enumerated in Figure 2.9.

23

Function Name Pu So

fmt(formatoargl,...) Generates a string in the format defined by the
"format" parameter, with argl,... substituted.

i2s(integer) Converts an integer value to a string representation.

s2i(string) Converts a character suing to an integer.

len(string) Reams the length of a string.

inputfile(O) Returns a string naming the input file.

outputfile(O) Returns a string naming the output file.

basename(file:string) Returns a copy of a string without dotted extension.

%output(val:string) Val is written to the standard output

%error(val:string) Val is written to the standard error.

%assert(condition:boolean, If the value of condition is false, Kodiyak prints
message: string) message to the standard error file and terminates,

otherwise, the procedure does nothing.

%outfile(name: string, Val is written onto the file "name".
val : string) If name is null, val goes to stdout.

%errfile(name: string, Val is written into the file "name".
val : string) If name is Null, val goes to stderr.

Figure 2.9

Kodlyak Functions.

f. Using the Kodiyak Translator.

The Kodiyak compiler creates and processes many files. Among them are

files that are processed by YACC, LEX, and by the C compiler. The Kodiyak

compilation process also depends upon two predefined files. The first is the Kodiyak

library. This contains functions for creating the parse tree, evaluating attributes,

24

concatenating strings, etc. The second file is the user library. This is a set of C functions

that the programmer may define for himself.

The command to invoke the Kodiyak translator is "k program.k" where

"program.k" is the kodiyak program to be compiled. Files to be compiled should have

the extension ".k" or the compiler may not accept it. Kodiyak programs may also have

the extension ".m4" if the program is to be run through the macro-preprocessor prior to

Kodiyak compilation.

After the program is compiled, (assuming no errors are present), the resulting

object code will be in the file "program" in the current directory.

D. THE SPEC LANGUAGE.

SPEC is a formal language for writing black-box specifications for components of

software systems. SPEC uses the event model to define the black-box behavior of

proposed and external systems. Black-box specifications are developed for the external

interfaces of the system in the functional specification stage of software development,

and for the internal interfaces in the architectural design stage. Discussion of the event

model and the SPEC language, extracted from [Ref. l:pp. 3.1-3.151, follows. Appendix

A and [Ref. 1] contain a listing of the grammar for the SPEC language.

1. The Event Model.

In the event model, computations are described in terms of events, modules and

messages. An event occurs when a message is received by a module at a particular

instant of time. A module is a black box that interacts with other modules only by

25

sending and receiving messages. A message is a data packet that is sent from one

module to another module.

Modules can be used to model external systems such as users and peripheral

hardware devices, as well as software components. A module has no visible internal

structure. The behavior of a module is specified by describing its interface. The

interface of a module consists of the kinds of events that can occur at the module along

with its response to each kind of event. Each kind of event corresponds to a different of

incoming message. Each response consists of the later events directly triggered by a

given initial event.

Any module accepts messages one at a time, in a well-defined order that can be

observed as a computation proceeds. Message transmission is assumed to be reliable.

Messages can have arbitrarily long and unpredictable transmission delays. The order of

messages arriving is normally not under control of the designer.

In the event model each module has its own local clock. The local clocks of

different modules are not necessarily synchronized with each other. Each event occurs at

a well-defined instant of time, which is the time at which the destination module receives

a message, according to its own local clock. The length of time between two events is

precisely defined if both events occur at the same place. The length of time between two

events at different locations can be estimated in terms of two readings of the same clock,

but this is only an approximation because of unpredictable message delays in obtaining

remote clock readings. The only kind of time interval meaningful in the event model is

26

the duration between two events. There is no way to distinguish between computation

delay and communication delay in the event model.

Each message has a sequence of zero or more data values associated with it. The

other attributes of a message are its name, its condition and its origin. All of these

attributes are single valued. Exceptions are modeled as messages by means of a

condition attribute, which can take on the values "normal" and "exception". The

condition of a message expressing a normal request for service is "normal". The

condition of a message reporting an abnormal event somewhere is "exception", in which

case the name of the message is the name of an exception condition.

The response of a module to a message is completely determined by the sequence

of messages received by the module since it was created. A module is mutable if the

response of the module to at least one message it accepts can depend on messages that

arrived before the most recent incoming message. A module is immutable if the response

of the module to every possible message is completely determined by the most recent

incoming message. Mutable modules behave as if they had internal states or memory,

while immutable modules behave like mathematical functions. A module is immutable if

and only if it is not mutable.

Each module has the potential of acting independently, so that there is natural

concurrency in a system consisting of many modules. Since events happen

instantaneously and the response of a module is not sensitive to anything but the

sequence of events at the module, the event module implies concurrent interactions with

a module cannot interfere with each other at the level of individual events. This non-

27

interference must be guaranteed by implementations which require a finite time interval

to trigger the responses to an event. The response of a module is under the control of the

designer.

In modeling concurrent systems it is sometimes necessary to specify atomic

transactions. Atomic transactions are non-interruptible sequences of events at a module.

Once a module starts an atomic transaction, it cannot accept any messages that are not

part of the transaction until it is complete. Atomic transactions are sometimes needed to

specify non-interference between concurrent sets of activities involving chains of

multiple events at the same module. Atomic transactions must be used with care because

they can lead to deadlocks if the protocols of the modules involved in a transaction are

not compatible with each other, and can lead to starvation if a transaction goes on

forever.

Modules can be used to model current and distributed systems, as well as systems

consisting of a single sequential process. The event model helps to expose the

parallelism inherent in a problem, because the only time orderings specified are those

which are unavoidable and are agreed on by all observers.

Events can be triggered at absolute times. Such events are called temporal events.

Temporal events are the means by which modules can initiate actions that are not direct

responses to external stimuli. Formally a temporal event occurs when a module sends a

message to itself at a time determined by its local clock. Unless explicitly stated

otherwise, there may be an unpredictable delay between the time when the message is

sent and the time when it is received, just like for any other message.

28

2. The SPEC Language.

The SPEC language uses second order logic for the precise definition of the

desired behavior of modules. The Spec language provides a means for specifying the

behavior of three different types of modules:

(1) Functions

(2) State machines

(3) Types

Each of these types of modules is described in the following pages along with

examples of each type of module.

a. Functions.

Function modules are immutable and calculate finctions on data types, where

"function" is interpreted as in standard mathematics. Usually function modules provide

only a single service and hence accept anonymous messages. Figure 2.10 gives an

example of the specification for a square root function.

29

FUNCTION square root {precision:real)
WHERE precision > 0.0

MESSAGE (x:real)
WHEN x>= 0.0
REPLY (y:real)
WHERE y >= 0.0 & approximates (y*yx)
OTHERWISE REPLY EXCEPTION imaginary-square-root

CONCEPT approximates (rI r2:real)
--True if rl is a sufficiently accurate
--approximating of r2.
--The precision is relative rather than absolute
VALUE (b:boolean)
WHERE b<=> abs ((rl - r2)/r2) <= precision

END

Note: "--" introduces a comment and all keywords
in Spec appear in all capital letters

Figure 2.10
Function Example.

b. State Machines.

A machine is a module with an internal state, i.e., machines are mutable

modules. Figure 2.11 shows an example of a machine. The behavior of the machines is

described in terms of a conceptual model of its state, rather than directly in terms of the

messages that arrived in the past, because descriptions in terms of such a conceptual

model are usually shorter and easier to read.

30

MACHINE inventory
--assumes that shipping and supplier are other modules
STATE (stock:map (item,integer))
INVARIANT ALL (i:item::stock[1I >= 0)
INITIALLY ALL (i:item::stock[l] = 0)

MESSAGE receive (i:item,q:integer)
--Process a shipment from a supplier.
WHEN q> 0
TRANSITION stock[l]=*stack[i] + q
--Delayed responses to backorders are not shown.

OTHERWISE REPLY EXCEPTION emptyshipment

MESSAGE order (io:itemqo:integer)
--Process an order from a customer.

WHEN 0 < qo <= stock[io]
SEND ship (is:item, qs:integer) TO shipping
WHERE is = io, qs = qo
TRANSITION stock[io] + qo = *stock[io]
WHEN 0 < qo > stock[io]
SEND ship (is:item, qs:integer) TO shipping
WHERE is = is, qs = stock[io]
SEND back-order (ib:item, qb:integer) TO supplier
WHERE ib = io, qb + qs = qo
TRANSITION stock[io] = 0

OTHERWISE REPLY EXCEPTION empty-order
END

Figure 2.11
Machine Example.

c. Types

A type module defines an abstract data type. An abstract data type provides

many services therefore the messages of a type module usually have a name. An abstract

data type consists of a set of instances and a set of primitive operations involving the

instances. The instances are the individual data objects be'onging to the type. The

instances of an abstract data type are black boxes. The properties of the instances are not

visible directly, and can only be observed and influenced by means of the primitive

31

operations. The properties of an instance are determined by the primitive.operation that

created the instance and the sequence of primitive operations applied after it was created.

Data types are either mutable or immutable. For immutable types the set of

instances and the properties of each instance are fixed. Operations producing instances

of the type are viewed as selecting members of this fixed set. Figure 2.12 is an example

of an immutable abstract data type.

TYPE rational
INHERIT equality (rational)
MODEL (nur den:integer)
INVARIANT ALL (r:rational::r.den -=- 0)

MESSAGE ratio (num den:integer)
WHEN den -= 0

REPLY (r:rational)
WHERE r.num = num, r.den = den

OTHERWISE REPLY EXCEPTION zerodenominator

MESSAGE add (x,y:rational) OPERATOR +
REPLY (r.rational)
WHERE r.num = x.num*y.den+y.num*x.den,

r.den = x.den*y.den

MESSAGE multiply (x y:rational) OPERATOR *

REPLY (r:rational)
WHERE r.nutn = x.num*y.num, r.den = x.den*y.den

MESSAGE equal (x y:rational) OPERATOR =

REPLY (b:boolean)
WHERE b <=> (x.num*y.den = y.num*x.den)

END

Figure 2.12
Immutable Abstract Data Type.

The state of a mutable data type consists of a set of instances which have

internal states. The initial state of a mutable type is an empty set of instances. Mutable

32

types have operations for creating new instances, and usually also operations that can

change the properties of an instance once it has been created. An example of a mutable

abstract data type with immutable instances is the set of unique identifiers for the objects

in a database.

Ati histarcc of a mutable ddta type is very similar to a state machine, except

that the state machine is implicitly created at the start of the computation, while the

instances of a mutable data type are created as a computation proceeds. A state machine

has exactly one instance, while a mutable data type can have any number of instances.

Figure 2.13 is an example of a specification of a mutable data type.

33

TYPE queue (ttype)
INHERIT mutable (queue)

-Inherit definitions of the concepts new and defined.
MODEL (e:sequence)
-The front of the queue is at the right end.

INVARIANT we
--Any sequence is a valid model for a queue.

MESSAGE create
--A newly created empty queue.

REPLY (q:queue(t)) WHERE q.e = 0
TRANSITION new(q)

MESSAGE enqueue (x:t, q:queue(t))
--Add x to the back of the queue.
TRANSITION q.e = append(Ix], *q.e)

MESSAGE dequeue (q:queue{t})
--Remove and return the front element of the queue.
WHEN not-empty (q)
REPLY (x:t)
TRANSITION *q.e = append (q.e,[x])
OTHERWISE REPLY EXCEPTION queue underflow

MESSAGE notempty (q:queue(t})
--True if q is not empty.

REPLY (b:boolean) WHERE b <=> (q.e -0 [1)
END

Figure 2.13
Mutable Abstract Data Type.

34

III. SYSTEM DESIGN.

The first stage of the design effort was to analyze the requirements and obtain a better

understanding of the SPEC language. To facilitate this process, a language reference

manual [Ref. 191 was developed. Ttus language reference manual describes many of the

finer points in the SPEC language and provided a firm starting point for the type checker.

It assisted in illuminating many of the issues that would have to be addressed in the

design and capabilities that the type checker would have to encompass.

A. SPEC LANGUAGE TYPE CONSISTENCY CONSTRAINTS.

Like most computer languages, SPEC has many constraints on the naming and use of

various operands. These constraints were derived from [Ref. 1] and [Ref. 19].

1. SPEC Language Semantic Issues.

a. Definitions.

* Descendant of a Module: A module is considered to be a descendant of another
module if it explicitely inherits the traits of that module using an INHERIT
clause.

" Local: A name is local if it is only visible to the module / entity in which it is
contained.

" Global: A name is global if it is visible to the entire specification.

" Signature: The signature of a name is the ordered set consisting of the actual
name, the arguments associated with that name and the types associated with the
arguments.

* Boolean Value: A value that may only take on the logical values of "true" or
"false".

35

* Unique Definition Constraint: Only one definition of a concept or message
with the same signature is allowed to be visible in any of the modules in a well
formed specification.

* Definition Consistency Constraint: Some concepts may have to be renamed
before they can be imported or inherited.

" Import Consistency Contraint: A concept can be imported from another
module only if the other module defines and EXPORT's the concept.

" Instance Consistency Constraint: Requires that the actual parameters of an
instance of a generic module must satisfy any constraints mentioned in the
WHERE clause after the generic parameter declaration.

" Input Coverage Constraint: Requires every concept to have proper values for
all possible inputs satisfying the precondition. Also, the WHERE and
TRANSITION clauses of each message must have proper values for all states
and input values satisfying the associated preconditions.

* Congruence Consistency Constraint: A property of MESSAGES and
CONCEPTS that is true if they mean the same thing for all equivalent conceptual
representations.

" Completed Specification: A specification that meets all of the Constraints and
scoping requirements of the SPEC language and contains no instances of the not
yet defined clause ("T).

b. Scoping.

" The names of MODULES are global and unique. No module name may be
redeclared at any other point in the specification.

" The names of MESSAGES and EXCEPTIONS are global.

* The names of CONCEPTS are local to the module in which they are defined.
Concepts may be inherited by another module with the use of an INHERIT
clause in that module. A Concept may only be associated with other modules if:

(a) It is explicitly exported with an EXPORT clause and

(b) It is explicitly imported into the module it is to be associated with by an
IMPORT clause.

" The FORMAL PARAMETERS of a generic module are visible in the module in
which these names are defined.

36

" The component names of the MODEL of a type are visible in the module in
which the names are defined and in any descendants of that module.

" The component name of the STATE of a machine are visible in the module in
which the names are defined and in anydescendants of that module.

* The FORMAL PARAMETERS of a message are visible to the entire
specification of that message.

" The FORMAL ARGUMENTS of a message are visible to the entire specification
of that message.

" The FORMAL ARGUMENTS of a reply clause are visible from their declaration
to the end of the when or otherwise clause in which they are declared. If no
when or otherwise clause exists, they are visible until the end of the message
specification.

" The FORMAL ARGUMENTS of a send clause are visible from their declaration
to the end of the when or otherwise clause in which they are declared. If no
when or otherwise clause exists, they are visible until the end of the message
specification.

" The FORMAL ARGUMENTS of a generate clause are visible from their
declaration to the end of the when or otherwise clause in which they are declared.
If no when or otherwise clause exists, they are visible until the end of the
message specification.

" The visibility of LOCAL VARIABLES declared in a CHOOSE clause extends
from their declaration to the end of the when or otherwise clause in which they
are declared. If no when or otherwise clause exists, they are visible until the end
of the message specification.

" The scope of variables bound to a quantifier extends from the "(" following the
name of the quantifier to the matching ")".

" All identifiers in SPEC must fall into one of the above categories.

c. Naming Constraints.

" The name of a module is considered unique if there is only one module defined
with its given name.

* The name of a message is considered unique if there is only one occurrence of
that name with it's specific signature within its scope.

37

" The operator of a message is considered unique if there is only one occurrence of
that operator with the specific signature of its corresponding name within the
operators scope.

* The name of a concept is considered unique if there is no other definition of that
name with the same signature within the name'S scope.

" Any other name construct is considered unique if there is no other occurence of

that name within its defined scope.

d. Type Consistency Constraints.

" An operation which is referenced to a specific module with the "@module"
qualifier must be defined (or inherited by) the referenced module.

" If the "@module" qualifier is not used to clarify the use of an operator or
message name, there must be exactly one candidate operation matching the types
of the actual parameters.

" Arguments and Parameters in SPEC are specified by position. If a value or name
is given for the arguments or parameters used in a call to a construct (the actual
parameters), the types of he names or value must match the corresponding
formal parameters or arguments.

" There must be a unique correspondence between the actual parameters and the
formal parameters. For example, if the $ operator is used to specify a variable
number of parameters in the formal definition, it must be determinable as to
which actual parameters the $ will be bound.

" An expression following a WHERE clause must evaluate to a boolean value.

* An expression following a WHEN clause must evaluate to a boolean value.

" An expression following a SUCH THAT clause must evaluate to a boolean
value.

" An expression following an IF or ELSEIF clause must evaluate to a boolean
value.

38

* The types of the expression following the "::" specification of a quantifier must
match the requirements of the quantifier. Predefined constraints are:

ALL Boolean
SOME Boolean
NUMBER Any type with an equality operator.
SUM Any type with a commutative & associative "+" operation.
PRODUCT Any type with a commutative & associative "*" operation.
UNION Any type with a commutative & associative union.
INTERSECT. Any type with a commutative & associative intersection.
MAXIMUM Any type with a partial order "<=" operation.
MINIMUM Any type with a partial order "<=" operation.

* The expressions on either side of a conditional operator must be of the same
type.

* All of the normal REPLY clauses of the same message must be of the same type.

* All of the REPLY EXCEPTION clauses with the same exception condition in the
same message must be of the same type.

* The definition of each message used in an expression must not contain any
TRANSITION clauses.

If a SPEC predefined operator is overloaded, the overloading message must have
the same number of arguments as the defined operator in the SPEC library. For
example, the "+" operator cannot be overloaded to a message that requires three
arguments.

B. CONCEPTUAL MODEL.

1. Requirements.

The SPEC type consistency constraints identified many different requirements for

the type checker. The more distinct requirements are:

* When a name is used in the specification, all defined argument lists for that name
must be searched to determine the correct signature for that usage. If more than
one possible matching signature is found, an error message must be reported
listing all the conflicting usages. Figure 3.1 shows three skeleton modules. In
the first two modules define two types, "nat" and "integer". They also define two
messages, "add", each of which is a legal definition within its scope. The third
module uses the "add" message. During the type checking process, an error must

39

be reported in function "doessomething" stating that more than one possible
signature match for the "add" message exists and reporting the conflicting
bindings.

TYPE nat
MODEL
INVARIANT true

MESSAGE add (n : nat, i : integer)
REPLY (i2: integer) WHERE i2 = i + n

END

TYPE integer
MODEL
INVARIANT true

MESSAGE add (n : nat, i : integer)
REPLY (i2: integer) WHERE i2 = i + n

END

FUNCTION doessomething
MESSAGE (i: integer, n: nat)

REPLY (i2: integer) WHERE i2 = add(n,i)
END

Figure 3.1
Conflicting Name Bindings.

" A data structure must be available at all times which retains the names, signature,
operator(s), module name, return type and parameters for each message in the
specification.

" A data structure must be available during importation which retains the names,
signature, module name, return type and parameters for each exported concept in
the specification.

" During name analysis, all module names must be examined prior to the
examination of any other name. The examination of message names, concept
names, a module's formal parameters and the state or model clause variables
should then be accomplished in order.

" Any variable names or types declared within any other SPEC structure are visible
within that structure only subject to defined visibility rules.

40

" The type of every visible name must be immediately determinable during the
type checking process to enable type consistency checking.

" Every name must be unique according to its scope and signature. If a name is
not unique, an error must be reported.

" All the formal arguments and parameters of a name must be retained in ful (i.e.,
the "type" and the name saved) in order to facilitate proper checking of variable
argument or parameter lists. In this way, if the name is bound within the actual
arguments or parameters, it is determinable which formal argument or parameter
is associated with that name.

2. Model.

Based on these requirements, a design was developed that provided an efficient

solution. The cornerstone of this design was the means in which a signature lookup was

accomplished. The best solution this research found was to have a map from a name to a

set of tuples. Each tuple in this set represents one distinct overloading of the name in the

domain of the map. By searching this set of tuples, the specific overloading which is

being used can be found.

To provide an efficient means for information lookup, each tuple in this set

contains a list and a number. The list is an ordered list of tuples and each tuple in the list

contains information on one of the formal arguments in the signature. The number is a

value or cross reference that when "looked up" in the symbol table provides immediate

access to all information concerning that symbol.

The tuple representing one of the formal arguments or formal parameters consists

of two elements--the name of that element and its "type". The "type" that is placed in

this second element is derived from a map which has a domain consisting of all the types

that are visible at that point and a range consisting of a translated text for that specific

41

type. The translated text is simply a modified version of the actual type name. If a type

name belongs to a concept, it is local to the current module, so an "@" symbol is

appended to the name followed by the current module's nar,.e. If the type name belongs

to a module, the range matches the domain. In this way, if a concept is defined

differently in two different modules the "relationships" (e.g., messages, etc.) between the

modules must use the concept they were defined with and not the corresponding concept

in the other module. In Figure 3.2 the two types of entries permitted in the "type" map

and the module that defines them are shown.

TYPE complex
MODEL (re: real, im: imaginarypart)
INVARLNT

CONCEPT imaginary-part: type
WHERE imaginary_.part = real

END

Actual Name Translated equivalent.
complex complex
imaginary-part imaginary.part@complex

Figure 3.2

Limiting Type Visibility.

Based on these features, the symbol table becomes a map from the cross reference

value to a tuple. This tuple contains the required information for each symbol, its

parameters, class, textual name and type. The parameters element is a tuple which

represents the formal parameters (if any) of the symbol. The class element contains some

42

representation of the class (function, message, concept, etc.) that the symbol belongs to,

and the textual name element contains the actual text of the symbol (used for error

reporting).

While determining the conceptual model of the last element of this tuple, it was

noted that each symbol that would be placed in the symbol table was either a variable, a

concept or message or a module name. Interestingly enough, this indicated that the type

element of the tuple contained in the domain could have a dual purpose. If the symbol

was a variable or "non-function" concept (a concept without a VALUE clause), the actual

type of that name could be placed in that field. If the symbol is a message or concept

with a VALUE clause, the type that the symbol returns could be placed in that field; and

if the symbol was a module name, no information needed to be placed in that field.

Actually building these tables presented another problem. Due to the declaration

requirement that a module name could not be redeclared and that concept and message

names are visible throughout the entire module they are defined in, the necessary "name"

table has to be built in three "layers". In the first layer, all of the module names are

collected into a table and any redeclarations are identified. These module names are then

passed down into the second layer during which all message and concept names are

added to the table. Additionally, if a message has an operator associated with it, the

operator can be treated as a name unto itself, with the same arguments as the message

and stored in the table accordingly.

When this table is returned to the top of the semantic tree, one additional level of

indirection is added to it so that a name declared in one module doesn't "overwrite" the

43

identical name declared in a different module. This level of indirection is added by

taking the original map and making it the range of a new map whose domain is the

module name. Figure 3.3 shows this process.

before: string -> string

after: module_name -> string -> string

Figure 3.3
Localizing a Map.

The final layer in the name analysis process takes this table produced by the

second layer and "cuts" it within each module so that only those names defined in that

module are passed back down. All other names that are encountered within that module

are then added to it, according to the scope rules of the SPEC language. With the tables

being "manuevered" through the semantic tree during this layer, the type consistency

analysis can be performed. Additionally, if the tables produced by the second layer are

passed down the tree also, these tables can be used to verify whether a message exists or

doesn't exist in another module. Figure 3.4 demonstrates this name layering process.

Layer Contains Structure

I nothing, yet. name -> tuple

2 module names name -> tuple

3 modules, concepts, messages module name -> (name -> tuple)
3 modules, concepts, messages name -> tuple

T
this map only has locals.

Figure 3.4
Name Layering.

44

With these tables, the type consistency analysis simplifies to two distinct parts.

The first part involves obtaining the correct symbol from the tables produced in the

layering process. To determine that only one unique possibility exists for this symbol,

both of the layer three tables must be searched--the local table and the table which

contains all the symbols defined in other modules. Howevei, in the second table, only

messages need be examined.

The second part of the type consistency analysis involves checking the actual type

of the symbol. Ideally, this should only be a "lookup" in the symbol table, but since a

message or concept may have a value that is transitively dependent on another message

or concept,a routine that recursively resolves the type must be performed. Figure 3.5

shows a two dimensional transitive dependency situation. The first message, message-l,

has a resultant value that is dependent upon a concept, dimension_2. Theoretically, this

transitivity could be repeated extensively.

MESSAGE message (...)
REPLY dimension_2 (. .)

CONCEPT dimension_2 (...)
VALUE(...)

Figure 3.5
Result Values Transitive Dependency.

To conclude the process, the type is passed up to the next higher level of the

semantic tree and used to resolve that level. Additionally, any errors encountered are

concatenated onto the error messages from the "children" of the current level and also

45

passed up. When the uppermost level of the semantic tree receives these enor messages

from its children, the type checking process is completed and the errors can be reported

to the user.

C. DESIGN CONVENTIONS.

In an effort to increase the readability of the source code, it was decided that the M4

macro preprocessor would be used and a stardardized attribute naming schema adopted.

The attribute naming schema assisted in cutting down the source code size, but the M4

macro preprocessor helped significantly more. The M4 preprocessor "shrunk" the actual

code size almost 50% (3926 lines prior to expansion, 7591 after) by coalescing multiple

source code lines into one line of M4 code.

1. Attribute Naming.

The primary rule followed in the naming of all attributes was to make the name as

descriptive as possible concerning the purpose of the attribute, without "exploding" the

size of the source code. Additionally, each attribute is appended with an underbar L)

followed by a descriptive character (s or i) which signifies the use of the attribute

(synthesized or inherited). Some sample names include "module name-s",

"visibletypes-i" and "ip-stbls". A complete listing of all descriptive names is

contained in Appendix D.

Certain abbreviations were adopted to assist in the naming, without making the

name too long. Some of the more common abbreviations include:

46

ip : signifies that the attribute is currently "in the process" of being built. The

information currently contained in this attribute is not reliable for any other purpose than

building the final attribute and thus should not be used for any other purpose.

Iclzd : denotes that a table is "localized". A localized table is normally a map

with a domain consisting of a string and the range containing another map. The string in

the domain string will always be a module name or a scope related value (such as

"GLOBALTYPENAMES" in myconst.m4).

stbl : symbol table. Any attribute name prefixed by this word denotes an attribute

that is part of the symbol table group of attributes (e.g., stblnames).

xref : cross reference. Any attribute containing this abbreviation has a range

which contains cross reference information in it (normally within a tuple). Many times, a

prefix is appended to this word (mxref or mcmxref) to assist in the distinction of the

attributes' purpose. Two of the more common attributes using this abbreviation are

mxref (module cross reference) and mcmxref (module-concept-message cross reference).

env : environment. This abbreviation is commonly used in attributes that are

passed down to non-terminals to "inform" the non-terminal of the environment within

which it is currently being utilized.

2. M4 Macro Abstractions.

The actual M4 macro definitions are contained in three different files--

"attrib-psg.m4", "mymac.m4" and "myconst.m4". Two additional M4 files were used in

47

this design (head.m4 and tail.m4) but they simply contain certain M4 commands that are

required so that M4 will function properly with the Kodiyak tool. All of the M4 files are

enumerated in Appendix 2.

a. Attrib.psg.m4.

This file contains all the M4 macros that are associated with a general

attribute passing capability. They could be used in any Kodiyak program and are not at

all specific to the type checker. Most of these macros have been derived from the

"macros.m4" file developed by Robert Herndon and promulgated with the Kodiyak

compiler. Some modifications were made to the actual definitions for the purpose of

standardization, however. Most of these modifications involved changing a macro's

name to more accurately reflect how many attributes were being passed and how many

non-terminals these attributes are passed to.

There are six actual groups of macros within this file. Each group is

characterized by a descriptive name, followed by two integer values separated by an

underbar. The name details the purpose of the macro and the integer values represent the

number of non-terminals being passed followed by the number of attributes affected

(e.g., passio2_4--pass in order to two non-terminals, four attributes). The arguments for

the macro follow in the same order as the integer numbers--non-terminals first, then

attributes. The six names used for these macros are:

Passup : Pass up an attribute from a child non-terminal ($1, etc.) to the parent

non-terminal ($$). Figure 3.6 graphically depicts this class.

48

Parent Non-terminal.

Child Non-terminal

Figure 3.6
Passing Up an Attribute.

Passdn : As shown in Figure 3.7, an attribute is passed down from the parent

non-terminal to child non-terminal(s).

Parent Non-terminal.

Child-1 Child-2 Child-3 Child-4 Child-n

Figure 3.7
Passing Down an Attribute to "n" Non-terminals.

Passovr : Figure 3.8 shows how this macro "passes over" an attribute from

one non-terminal to another. There are two variations of the passovr macro. The first

variation is simply a "passovr" from one non-terminal to another (passovrl). The

second, which is a logical extension of the first, passes the specified number of attributes

to more than one non-terminal from only a single non-terninal. To vividly display this

significant difference from the weave and passio macros, the naming of this variation is

slightly different from the standarc -aming. An "x" was placed between the first integer

(signifying number of non-terminals) and the underbar. The "x" is best interpreted as a

"times". Thus, the macro looks like "passovr2xl" which means "passovr two times, one

attribute".

49

Parent Non-terminal,

Child-1 Child-2 Child-3 Child4 Child-n

Figure 3.8
Passing Over an Attribute to "n" Non-terininals.

Passio : Pass an attribute in order from the parent non-terminal, through the

specified children non-terminals and back to the parent. Figure 3.9 shows this commonly

used macro.

Parent Non-terminal.

Child- I Child-2 Chl-3 Ci-4 Child-n

Figure 3.9
Passing an Attribute In order to "n" Non-terminals.

Weave : Weave an attribute from a child non-terminal, through other

specified children non-terminals and into a non-terminal. As shown in Figure 3.10, this

macro is similar to Passio, except the parent non-terminal is not affected.

Parent Non-terminal.

Child-1 Child-2 Child-3 Child-4 Child-n

Figure 3.10
Weaving an Attribute to "n" Non-terminals.

cat...up : Concatenate "..." up to the parent non-terminal from the children.

The ..." may be either the abbreviation "sir" meaning string or "map" meaning map.

50

b. Mymn.m4.

This file contains macro definitions that are unique to the type checker. Each

of these definitions provides a shorthand method of expressing multiple lines of Kodiyak

code and greatly simplifies the readability of the source. They can be logically divided

into three groups.

(1) Declaration Group.

The declaration group consists of four different macros, which are used in the

attribute definition section of the Kodiyak source. They are designed to make each non-

terminal's defined attribute list more readable.

(2) Symbol and Visibility Tables Group.

These macre are defined to assist in the attribute evaluation section of the

Kodiyak source. They primarily provide simple statements for passing the symbol (or

visibility) tables down from one non-terminal to another.

(3) Attribute Evaluation Group.

This group of macros is also used in the attribute evaluation section of the

Kodiyak source. They simplify the amount of code used to express the equations to

"make a declaration", etc.

c. Myconst.m4.

This M4 definition file contains the various symbolic constants used

throughout the Kodiyak source. Some slight variations of these constants are also used in

the C language file mylib.c and the correlation between them is vital to the type checker.

All relationships are detailed as comments in the mylib.c file.

51

IV. IMPLEMENTATION.

A. SEMANTIC INFORMATION STORAGE STRUCTURES.

To properly type check the SPEC source code, various tables were required. These

tables contained information relevant to each module, such as message names,

arguments, parameters and result types. The primary requirement that necessitated the

use of these tables was the "non-block" structured nature of certain SPEC constructs. For

example, when the information regarding a specific message is looked up, a "match"

must be searched for in the current module and all type modules corresponding to an

argument type of the message. These type modules may or may not have been

previously declared. Another of the non-block structured SPEC structures is the fact that

concept names are visible throughout the entire module in which they are enclosed, thus

requiring, at the very least, that the module be "passed over" twice--once to obtain the

information about concepts, and the second time to type check the rest of the module.

1. Module Types.

The module types table contains a listing of all the valid type names that are

visible in a module that must be accessible immediately upon entering :he module (e.g.,

concepts and module types). This table is especially important due to the fact that all

other tables depend upon it. Whenever a type is stored, its "translation" in this table is

52

used, vice its actual name. The translation represents a globally unique name for the

type. This permits the localizing of types that are truly local to the module such as

concepts.

The table is structured as a map from strings to a map of strings to strings. The

domain string consists of the module name, the domain suing of the range map

containing the actual name of the type (e.g., real) and the range string containing the

translation that will be used to reference the type. To symbolize local names, the current

module name is pref'xed by an "@" symbol and the actual local name

(local name@modulename).

One of the most important uses of this table is to select appropriate portions (or

"cuts") from it when a module is entered, and place these "cuts" in the visible types table.

This table is then used throughout the module.

2. Symbol Table.

Due to the lack of tuple structures in the Kodiyak language, the symbol table

actually consisted of five different tables. Each of these tables has a unique purpose.

The primary table, called the symbol table, consists of a map from strings to a map

consisting of strings to strings. The primary domain of the map contains module names.

The domain of the "range map" consists of the symbol's name and the range of this map

contains a group (or variant tuple) of patterns. Each pattern is separated by a delimiter

(PAT'ERNDELIMITER).

A pattern is a tuple consisting of a variant sized tuple of formal or actual

arguments, and a cross reference value. Each element in the formal or actual arguments

53

"subtuple" is separated by a delimiter (ELEMENTDELIMITER) and this subtuple is

separated from the cross reference value by another delimiter (XREFDELIMITER).

Figure 4.1 shows the format for a pattern and a pattern string. In this Figure, the

ELEMENT_DELIMITER is represented by -, the XREF_DELIMITER by 4 and the

PATIERNDELIMITER by.

arg1*arg2*arg3" ".- "argn4xref-value

patern string
pattern 1 .pattern 2 * pattern3 ..- pattemn

Figure 4.1
Example of a Pattern

The cross reference value is of extreme importance to the type checker. It is used

in the rest of the maps which contain the symbol table information to access the

information. Without this cross reference value, much of the information required could

not be accessed properly.

a. Textual Names.

This is the first table containing the symbol table information, other than the

actual symbol table. Its structure is a map from integers to strings. The domain of the

map contains the cross reference value and the range contains the actual text of the name

of that symbol. This information is commonly used in error messages.

b. Parameters.

This table contains the formal parameters associated with a symbol. Its

structure is a map with a domain of integers and a range of strings. The domain is the

54

cross reference value of the symbol and the range is a string consisting of a concatenation

of all the parameters of the symbol and their types. Each element in this concatenation is

separated by a delimiter and within each element, the element's name and its type are

separated by a different delimiter.

c. Results.

The results table is a map from an integer cross reference value to a string

which contains the result type of the symbol. A result type can be interpreted in two

different ways. In the case of a message or concept with a VALUE clause, the result type

contains the type of the reply or value. If the symbol is a variable or variable-type

concept, the result type contains the type of the variable.

Since the result table must be built prior to its use in the actual type

consistency checking, if the type to be placed in the table is a message or concept call,

the actual text of the message or concept call is prefixed by a special symbol, which I call

the reference symbol, and placed in the range of the map. This presents the requirement

that a C language function be used to assist in resolving the type of any construct, since

this result table value may be transitively dependent on other values. This C language

routine, which I have named "ResolveType", will recursively analyze the result types of

different symbols until a result type is found that is not preceeded by the reference

symbol.

d. Classes.

This table is used to uniquely identify the classes of various names. It is

extremely important and allows checking of a name to determine if it is a message,

55

module, concept or variable name. Each different class has a unique value and these

values are detailed in the file "myconst.m4", which is listed in Appendix B.

3. Visibility Tables.

The two visibility tables used by the type checker address the block structured

constructs in the SPEC language. They are initially constructed in a module's interface

and then passed into the various other parts of the module. These tables are then added to

and passed into additional non-terminals based on the scoping rules of the variables in

SPEC.

a. Visible Types.

The visible types table is constructed initially from the module types table. In

the module's interface, all types corresponding to the module's name are extracted from

the module types table and placed in the visible types table. This table is then passed into

all the other non-terminals in the program, as dictated by the scope rules. The visible

types table is not added to by concept names since these names are already in the table.

Any other types that are declared (in variable names) are added to the table. This table is

used to build any table requiring a type. The value of this type could be localized or the

actual name as discussed above.

b. Visible Names.

The visible names table is initially formed in the interface section of a

module. Currently, it is primarily used in the name declaration routines to determine if a

name is already declared. It will also be used extensively in the type checking routines to

56

obtain the cross reference value of a symbol when that symbol is used. As done in the

visible types table, it is passed to all non-terminals as dictated by the scoping rules of

SPEC.

B. MAJOR ATTRIBUTES.

1. Error Reporting.

Errors are reported in SPEC in one of two ways. If the error can be identified by

the attribute grammar equations, a call to the C language function "error_message" is

made. This function returns a string in the correct format for an error message and

contains the appropriate information. If the error cannot be identified by the attribute

grammar equations, but can be identified by a "C" routine, that C language routine may

call the errormessage function directly.

a. verror_message.

The verrormessage function is the actual C language function corresponding

to a call to "errormessage" in the attribute grammar equations. It is contained in the

mylib.c file and detailed in Appendix B. All of the codes for error messages are a

constant integer value and are detailed in the file myconst.m4 and mylib.c. Each error

has a unique code. Each code has a predetermined number of arguments that it requires

to properly report the error. When the error in "invoked", all of these arguments must be

passed to the verror-message function in the correct order.

b. Declaration Errors.

Declaration errors are determined by two different C language functions--

"vchecksimple-decl" and "vcheckcomplex-decl". The first of these routines,

57

check-simple-decl, is used to check all declarations that do not have a signature of

arguments associated with them. The second routine, check complexdecl, is used for

declarations that have a signature. Each of these functions returns a null string if the

declaration is not previously defined or an error message otherwise. All of the

declaration errors are placed in an attribute named "d_errors". Prior to adding the

current declaration to the respective table, this attribute is checked and if it is NULL, the

attribute is added.

c. Error Concatenation.

All errors are passed up the semantic tree in an attribute named error_msgs-s.

Each non-terminal in the tree has this attribute associated with it. At each level, the

attributes are concatenated with the lower levels and any errors that were discovered in

that level and passed up to the higher levels.

2. Building the Symbol Table.

As mentioned above, the symbol table actually consists of five structures, each

structure having a unique purpose. It was determined that the four secondary tables

(textual names, parameters, results and classes) could be built independent of the primary

table (stbl) since these tables depend only on the cross reference value which can be

determined immediately.

The primary table (stbl) is built in two layers, due to the declaration precedences

of SPEC. These precedences require that module names be globally visible and unique,

and messages and concepts be unique within their module. Therefore, the first layer of

the symbol table building process collects all the module names and passes them up to

58

the root non-terminal (in the "ip-mxref' attribute). These names are then passed back

down the semantic tree (as the ip-mcmxref attribute) and all the message and concept

names are collected in accordance with the scope rules of SPEC. In this way,

redeclarations are reported in a logical, semantically correct order. For example, if a

message or concept name redefines a module name, an error is reported when the attempt

is made to define the concept or message name. After this primary table is built, it is

passed down into all non-terminals and used to construct the visible names table in the

interface section of each module.

The other four parts of the symbol table are built in one layer. This layer collects

all the values and their appropriate range and passes the results up so that they can then

be passed back down and used by all the non-terminals.

3. Extended Types.

Due to the need to store result types in a result type table, it was necessary to

develop a slightly modified type called extended type. If a type is immediately

determinable, such as a literal or type name, the range of the visibletypes table for the

actual type name is placed in the "xtentype" attribute. If the type of the construct is not

immediately determinable, the actual text of the construct is placed in the attribute. In

this way, a C language function, resolve-type, can take this value and resolve the type of

the construct or symbol when needed.

C. NAME ANALYSIS.

Name analysis is the first of three aspects in the type checking process. During name

analysis, tables are built reflecting all the names used in the SPEC code. If an invalid

59

declaration is attempted or an invalid type used, an error is reported. The tables built

during name analysis are used during the second aspect (type consistency checking) to

determine if any errors occur.

1. Checking if an identical declaration exists.

There are two routines used to check if a declaration exists prior to declaring a

name--checkcomplex_decl and check.simpledecl. Each of these routines takes a

signature and analyzes all other symbols in the current scope to see if that name has been

previously declared. If it has, they will report an error, otherwise, they return a NULL

string.

2. Making a new declaration.

To make a declaration, three macros were defined in the "mymac.m4" file. Only

one of these macros need be used. Each of them checks a string type attribute (always

named derror-s) and if that attribute is NULL, makes the declaration. If the attribute is

not NULL, meaning that the declaration would be a "redeclaration", the declaration is not

made.

3. Reporting an error.

An error is reported at the declaration point as detailed in section 1 above. In

each non-terminal .tructure that declares a new name, the attribute "d_error_s" is

concatenated with all other error messages from the children non-terminals and the result

is passed up the semantic tree. In this way, the errors encountered are placed in the

correct position within the list of error messages.

60

D. IDENTIFYING ERRORS TO THE USER.

The third and final aspect of type checking reports any errors that occured to the user.

Currently all errors are identified by SPEC source line numbers. If no syntax errors

occur, these error messages are output to the standard output at the end of program

execution. Currently, the SPEC grammar does not have syntactic error productions

added in, although they have been developed for previous versions of the grammar.

61

V. EXTENSIONS.

A. TYPE CONSISTENCY ANALYSIS.

Type Consistency analysis is the second aspect of the type checking process.

Although the C language routines were coded and syntactically debugged, the required

attributes have not been implemented into the Kodiyak source code.

1. Seeking the Correct Symbol Table Entry.

The process of finding the correct symbol table entry is similar to that of checking

to see if a declaration has been made, except for the fact that actual arguments instead of

formal arguments are included in the "source" name. To obtain the correct symbol table

entry, a call is made to the C language routine "seeksymbol". This routine will search

the current environment (visible-names), and the global environment (stbl) to determine

if the name exists. If more than one possible interpretation of the name exists, the

function will return the appropriate error message, listing all possible interpretations. If a

unique candidate exists for the signature, the string representation of the cross reference

value of the symbol is returned. Conversely, if no symbol could be found that matches

the signature passed to seeksymbol, the string representation of the integer value "0"

will be returned. If desired, this routine could be easily modified to allow an error

message to be returned if no symbol exists.

62

2. Obtaining a Symbol Table entry's type.

If a symbol has been found that matches the actual name of the symbol, another

"C" language routine, "resolve-type" is called to obtain the result type of the symbol.

Using the information provided in the "stblresults" table, this routine recursively

analyzes the symbol's value until a valid type name is obtained. The recursive analysis is

required to resolve this table's transitive dependency on other messages or concepts as

discussed in Chapter 3. When this transitive dependency is resolved, the type name's

translation in the "visible-types" table is returned to the Kodiyak attribute. This attribute

is then passed up the semantic tree and used at "parent levels" to determine if an

operation is valid.

3. Determining if an Operator is defined.

During tue name analysis, an entry was made in the symbol table for each

operator overloading. Since SPEC is entirely defined in terms of the standard type

library, by processing the standard type library together with the SPEC code to be type

checked, all possible operator meanings are placed in the symbol table. To determine if

an operator use is valid, simply take the operator's textual representation, append the

appropriate arguments (determined by its use) to it and use the routine "seeksymbol".

This routine will then return the cross reference of the message that overloaded that

operator. Then the result type may be obtained as discussed in section 2 above.

4. Reporting Errors.

The reporting of type checking errors is very similar to the reporting of

declaration errors with one small exception. Since "seek-symbol" always returns a string

63

value, the attribute in which this value is stored must be checked to see if the attribute

contains an error message or the string representation of an integer (greater than 0). If

the attribute contains an error message, that error message is then concatenated with the

error messages generated by the children non-terminals and the result passed up the

semantic tree. Otherwise, only the error messages generated by the children are

concatenated and passed up the tree.

B. SPECIAL SPEC LANGUAGE ISSUES.

Some of the more complex SPEC issues such as inheritance, instance declarations

and importation/exportation were addressed and accounted for in the design, but not

implemented. The proposed methods for implementing these features, based on the

design is discussed below.

1. Inheritance & Instance Declarations.

Inheritance and instantiation present unique challenges to the generation of a type

checker using an attribute grammar tool. One of the most significant problems arises

because of the possible transitivity of either of these structures. For example, a module

may inherit a module which inherits another module, which inherits another module, etc.

This requires that the module which is the "lowest common denominator" be expanded

first, then the next, etc.

Additionally, the way that inheritance is defined in SPEC poses other problems.

Specifically, if a module inherits another module which contains a message with the

same signature as the current module, the two messages are combined according to

predetermined rules [Ref. 20] to form the expanded, resultant module,

64

a. Preprocessor Usage.

To address these unique problems, this thesis proposes the use of a

preprocessor. This preprocessor would take the SPEC source code, expand it as

necessary and present its output to the type checker. The type checker would then

operate upon this intermediate source code and produce its error messages. If the

"inheritance / instantiation tool" recognized any errors such as a circular inheritance, it

would report these errors to the user and terminate.

b. Error Reporting Drawback.

The preprocessor would present to the type checker a modified version of the

source code with no inheritance or instantiation (and probably write its output to a file).

This however, presents a problem. Since the type checker reports error messages based

on a source code line number, any errors identified would be associated with a line

number relating to the "expanded" source, not the original SPEC source code.

c. Potential Advantages.

This methodology may have its advantages, however. If the process of

inheritance introduces a structure that has semantic errors in it, the error could be looked

up in the output of the inheritance tool and traced back to its originator. Also, with the

advent of sophisticated text processing tools for the SPEC language, it may be possible to

edit the "true source" code in one window while viewing the error in another window.

Another implicit benefit may be that software developers could use the inheritance tool

independently to examine the expanded specification to determine if they have "hidden"

or "renamed" everything as appropriate.

65

2. Importation & Exportation.

One of the final issues addressed in the design was importation and exportation.

Although they are two different constructs in SPEC, they are uniquely related--a concept

may not be imported unless it is exported by the module in which it is defined.

Additionally, importation and exportation do not present any of the problems posed by

inheritance. They are not transitive and if a concept is already defined with an identical

signature, the new concept cannot be imported and an error should be reported.

The way in which the design was built presents a simple solution to

importation/exportation. Initially, a new structure (Iclzd-exportables) must be built.

This structure should be a localized map with a domain of strings and a range which is a

map. This domain string would contain the name of the module as in all localized maps.

The map which makes up the range should be a map from string to integer. It would

contain as a domain the name of the concept, and as a range an integer value (0 or 1)

representing the boolean value true or false. The range would be true if the concept is

exported, false otherwise.

The second part of the solution is when an importation is requested by a module,

this new table (clzd-exportables) is checked immediately. If the module does not export

the desired concept, an error should be reported. Conversely, if the desired concept is

exported, the "visiblenames" table would be augmented with the signature and cross-

reference information of the concept(s). This augmentation process would require a C

language function which processes the domain of the "stbl" structure for the specified

module and name and then returns a string consisting of all the new patterns (signature

66

and cross reference information) which are to be added. This routine would have to be

passed the "stblclasses" structure so that it could verify that the symbols that it returns

are indeed concepts and not messages.

C. IMPROVED ERROR REPORTING.

The type checker currently reports declaration errors in a way that is easy to

understand, but sometimes difficult to find the conflicting declaration. In order to

provide better feedback to the user, additional tables could be added to the symbol table

to promulgate information that would assist in error reporting. For example, a table with

a domain containing the cross reference value and a range containing the line number

where that symbol was declared would enable error reporting to report the location of a

conflicting declaration.

Another error reporting difficulty is that some of the SPEC constracts have WHERE

clauses that require dynamic (run-time) evaluation. Although it is not feasible to

automatically check these clauses, it is recommended that a warning message or pragma

be output listing the where clause's contents so that the user could examine this to ensure

the validity of the specification.

D. SUBTYPES.

Subtypes in SPEC are defined as concepts and have a WHERE clause associating the

concept name and another defined type. They present a slight problem because, like

inheritance or instantiation, a subtype may be transitively dependent on another subtype.

The solution to this problem involves using two C language routines, one for declaring a

67

subtype and one for analyzing it. The first routine, "declaresubtype" would take the

subtype name and the type which it is a descendant of and place it in a table. The second

routine, "is-subtype" would then take a type name and recursively analyze this table,

returning a boolean value representing the validity of the subtype. This routine

"is-subtype" could then be used in some of the existing C language routines such as

"type-equivalent" to assist in the determination of type conflicts.

E. VARIABLE ARGUMENT OR PARAMETER LISTS.

The implementation of variable argument or parameter lists (list preceded by a '$') is

an interesting proposition. Since there are many diffent ways in which these lists may be

fitted together, a recursive analysis is required. Currently, variable argument lists have

been acknowledged, but the required recurs., -aalysis has not been implemented. This

analysis should take place in the routines that check a declaration and seek a cross

reference.

68

VI. CONCLUSIONS.

A. INTEGRATION INTO A PROGRAMMING ENVIRONMENT.

To truly provide the SPEC user with an effective software development tool, the type

checker must be integrated into a programming environment. In addition to a type

checker, this environment should contain at least a syntax directed editor, pretty printer,

test case generator and evntually a translator that will translate a significant part of the

specification into a compilable target language.

In the short term, the type checker, syntax checker, inheritance preprocessor and

pretty printer should be able to work together in a way that makes the actual separation of

these tools transparent to the user. This could be accomplished efficiently by writing a

unix command script that begins a tool execution when the previously running tool (if

any) completes. In this script, the syntax checker, inheritance preprocessor and type

checker should be called in sequence to provide the user with syntactic and semantic

information concerning their program. Additionally, at least two options should be

provided with this script. One option would allow the user to retain a copy of the file

containing the specification after it has been expanded by the inheritance preprocessor

and the other would run the pretty printer on the code if it is semantically and

syntactically correct.

69

B. EVALUATION OF THE TYPE CHECKER.

Although the type checker is not as yet a usable tool, its feasibility has been

researched and a solid groundwork has been laid for the rest of the implementation.

1. Kodiyak Deficiencies.

While researching this thesis, many deficiencies and "bugs" were found in

Kodiyak. The primary deficiency was the lack of any types other than integer and string.

The implementation of the type checker was forced to use many identical data structures

for similar purposes that should have been one structure. Specifically, the symbol table

required by the SPEC language necessitates the use of a tuple in the range. Since there is

no tuple type in Kodiyak, four maps were used to contain the information.

The inability in Kodiyak to declare a global variable also presented a problem.

Ideally, since the symbol table is not modified once it is built, it would be convenient

(and conserve memory space) if this table could be placed in a variable or data structure

that could be referenced from every production. In this way, fewer attributes would have

to be passed down the semantic tree and the number of attribute equations would be

decreased.

The lack of documentation in the Kodiyak C library is a substantial drawback.

Since Kodiyak is entirely implemented in terms of other tools, the handling of strings and

integers is defined in the C language and utilized by the Kodiyak processor as function or

procedure calls. To effectively extend Kodiyak so that it could meet the requirements

dictated by SPEC, many long hours of deciphering the source code and experimenting

was required.

70

The lack of any predefined Kodiyak functions to output the contents of an entire

map is a handicap. During the incremental implementation of the various maps thai

make up the symbol table, it was necessary to output the information they contained to

verify the functioning of the attributes. Unfortunately, the only way to accomplish this

task was to select each individual map entry and display it. After a short while, this

became very tedious and so routines were built and debugged that dump one dimensional

maps.

2. Kodiyak Benefits.

Probably the most beneficial feature of Kodiyak is its ability to preprocess M4

files prior to conducting the Kodiyak scan. When the preprocessor is extensively used

and considered throughout the implementation, the source code size can be shrunk

dramatically, making both the programmer's and reader's job easier. Additionally, the

M4 macros defined by Robert Hemdon proved to be invaluable.

Another positive feature of Kodiyak is the way it integrates the functioning of

Lex, Yacc and the C Compiler to produce an executable product. Since all of these tools

are reasonably well understood, many of Kodiyak's functions can be analyzed from

another perspective, providing an alternative approach to debugging.

Kodiyak's C language interfacing ability, although difficult to decipher initially,

proved to be a benefit in the long run. It provided a way to "work around" the

deficiencies and implement the type checker in an efficient, sensible manner.

71

C. FUTURE WORK.

1. Extensions of the current implementation.

The type checker is feasible and worthwhile to complete. The extensions still

required are implementable by two students, working independently and present no

sigrificant problems. One student should focus effort on the preprocessor and another on

implementing type consistency checking, importation and integrating a current version of

the error productions into the type checker.

Since the design and implementation oi this thesis, the meaning of a signature has

been extnded to include the formal parameters of modules, concepts and messages. To

implement this feature, the type checker's implementation of a "pattern" must be

extended to include formal parameters by adding in a new delimiter and the additional

irformation. All of the C language routines which check declarations and look up names

must also be extended accordingly.

2. Incremental Type Checking.

One significant project that should be addressed in the future is the incremental

type checking of the SPEC grammar within a syntax directed editor. This would then

allow any errors to be identified concurrently with the writing of the specification,

permitting better time utilization. Additionally, the benefit for individuals learning the

SPEC language would be significant since as syntax or semantic errors were made, the

reason and cause would be displayed immediately. A syntax directed editor for SPEC

currently exists [Ref. 21].

72

D. GUIDELINES FOR EXTENDING KODIYAK.

The Kodiyak language is very simple to extend when the interactions between the C

library and the actual Kodiyak tool are understood. These interactions are manifested by

calls to functions in the C library which arz built through strings in the actual Kodiyak

AG code. For example, a Kodiyak language map reference translates into a call to one of

six map lookup functions, depending on the domain and range of the map. Some

guidelines for using the C language escape feature of Kodiyak are:

* Whenever a string is used directly from the Kodiyak program, the string should
be immediately "flattened" to the temporary work area (by means of a call to
xtstrflatten) and then IMMEDIATELY copied to a work area belonging to your
routines. Leaving a string in the Kodiyak temporary work area can be fatal since
Kodiya': overwrites that work area frequently.

e Always build in extensive error checking in your routines to avoid errors such as
array overflow. "Silent" errors in your routines may cause other, reportable
errors within Kodiyak which may confuse the situation.

9 Syntactically debug your routines independently from Kodiyak (as best as
possible) to avoid unnecessary (and frustrating) delays. The Kodiyak
compilation process is not fast by any means--especially the C compilation
phase.

* The Kodiyak program prepends a "w" to the name of a routine beginning with a
"%" (e.g. a procedure) and a "v" to the name of any function before calling that
function in C.

APPENDIX A - SPEC GRAMMAR.

This Appendix contains the version of the SPEC grammar used to implement the type

checker. This version does not contain any of the syntactic error productions which have

been developed or any attribute definitions. It is primarily provided as a quick reference

for the grammar of the SPEC language and for contrast with the type checkers attribute

grammar code which is contained in Appendix B.

version stamp SHeader: spec.k,v 1.10 89/02/11 20:11:31 berzins Locked $

Kopas Version -- Updated to version 1.11 of grammar 20 April 89.

in the grammar, comments go from a "!" to the end of the line.

Terminal symbols are entirely upper case or enclosed in single quotes (').

Ncnterminal symbols are entirely lower case.

Lexical character classes start with a captial letter and are enclosed in {}

in a regular expression, x+ mea-s one or more x's.
in a regular expression, x* means zero or more x's.

Zn a reqular expression, [xyzJ means x or y or z.
in a regular expression, [^xyz] means any character except x or y or z.

I. a regular expression, [a-z] means any character between a and z.

in a reg-..ar expression, . means any character except newline.

definitions of lexical classes

%defirne Digit [0-9]

%define int :(Digit'+

%define Letter : [a-zA-ZI

%defire Alhpa : ({Letter} {Digit} C" ")
%define Blank : \t\n)

%define Quote : ["]

%def'ne Backslash-
%define Char :([^"\\)I{Backslash){Quote}i{Backslash}(Backslash})

def:rnitions of white space and comments

:(Blank)+

definitions of compound symbols and keywords

AN: :"&

CR "

74

NE
NLT :
NGT:n>

NLE "-~<"
NGE :..=

EQV

NEQV

RANGE . 3
APPEND "II"
MOD :{Backslash)lMOD

EX**3

BIND ..

ARROW : w>.

IF :IF
THEN :THEN
ELSE :ELSE
IN :IN
U :U

ALL :ALL
SOME :SOME
NUMBER :NUMBER
SUM :SUM
PRODUCT :PRODUCT
SET :SET
MAXI MUM :MAXIMUM
MINITMJM :MINIMUM
UNION :UNION
INTERSECTION :INTERSECTION
SUCH :SUCH{Blank}THAT
ELSE IF :ELSE(Blank)*IF

AS :AS
CHOOSE :CHOOSE
CONCEPT :CONCEPT
DEFINITION :DEFINITION
DELAY :DELAY

:DO
EN: :END
EXCEPTION :EXCEPTION
EXP ORT :EXPORT
F7 :FI
FOREACH :FOREACH
FROM :FROM
FUNCTION :FUNCTION
GENERATE :GENERATE
HIDE :HIDE
IMPORT :IMPORT
INHERIT :INHERIT
INITIALLY :INITIALLY
INSTANCE :INSTANCE
INVXIANT :INVARIANT
MACHINE :MACHINE
MESSACE :MESSAGE

MC: E7 :MODEL
01 :OD
OF :OF
OPE P AT OP :OPERATOR

75

OTHERWISE :OTHERWISE

PERIOD :PERIOD

RENAME :RENAME

REPLY :REPLY

SEND :SEND
STATE :STATE

TEMPORAL :TEMPORAL

TIME :TIME
TO :TO

TRANSACTION :TRANSACTION
TRANSITION :TRANSITION

TYPE :TYPE

VALUE :VALUE

VIRTUAL :VIRTUAL

WHEN :WHEN

WHERE :WHERE

INTEGER-LITERAL :{Int}

REAL LITERAL :{Int}"."(Int)

CHARLITERAL

STRINGLITERAL :(Quote}(Char} (Quote}

NAME :(Letter)(Alpha)*

operator precedences
%left means 2+3+4 is (2+3)+4.

%left '', IF, DO, EXCEPTION, NAME, SEMI;

%left ',', COMMA;

%left SUCH;

%left IFF;

%left IMPLIES;

%left OR;

%left ANC;

%left NOT;
%left '', '>', '=', LE, GE, NE, NLT, NGT, NLE, .2-, EQV, NEQV;
%nonassoc IN, RANGE;

%left U, APPEND;

%left '+', '-', PLUS, MINUS;

%left ''', '/', MUL, D7V, MOD;

%left UMINUS;

%left EXP;

%left '$', '', '(' '', '.', DOT, WHERE;
%left STAR;

:attribute declarations

productions of the grammar

start

spec

76

spec

spec module

A production with nothing after the "I" means the empty string
is a legal replacement for the left hand side.

module

function

machine

type
(1

i definition

I instance of a generic module

function
optionally virtual FUNCTION interface messages concepts END

Virtual modules are for inheritance only, never used directly.

machine
optionally_virtual MACHINE interface state messages transactions temporals

concepts EN;

type

optionally virtual TYPE interface model messages transactions temporals
concepts END

definition

DEFINX:TON interface concepts END

instance
:NSTANCE fornal name '=' actual-name END

INSTANCE foreach actual _name END

For making instances or partial instantiations of generic modules.
The foreach clause allows defining sets of instances.

interface
formal name inherits imports export

This part describes the static aspects of a module's interface.

The dy,.amic aspects of the interface are described in the messages.
A nc"-e is generic iff it cas parameters.

77

The parameters can be constrained by a WHERE clause.

1 A module can inherit the behavior of other modules.

A module can import concepts from other modules.

A module can export concepts for use by other modules.

inherits
inherits INHERIT actual-name hide renames
{}

Ancestors are generalizations or simplified views of a module.

A module inherits all of the behavior of its ancestors.

Hiding a message or concept means it will t inherited.

inherited components can be renamed to avoid naming conflicts.

hide

HIDE name list

Useful for providing limited views of an actor.

Different user classes may see different views of a system.
Messages and concepts can be hidden.

renames

renames RENAME NAME AS NAME
{ I

Renaming is useful for preventing name conflicts when inheriting

from multiple sources, and for adapting modules for new uses,

The parameters, model and state components, messages, exceptions,

and concepts of an actor can be renamed.

imports

imports IORT name list FROM actual name

export

EXPORT name list

messages
messages message

78

message

: PSSAGE formal-message operator response

r o

response
:response body

{ }
I response cases

{ }

response cases

WHEN expression list responsebody response_cases
(}J

I OTHERWISE response_body

responsebody

choose reply sends transition

choose

CHOOSE 1(' field list restriction)'

reply

REPLY actual message where

GENERA-E actual nessage where used in generators

sends

sencs send

send

optionalforeach SEND actual_message TO actual_name where

transition
TRANSI:ON expression list for describing state changes

79

forma. message
optionalexception optionalformalname formalarcuments

actual_message
optionalexception optionalactualname formal_arguments

where

WHERE expression-list

I %prec SEMI must have a lower

precedence than WHERE

optionally_virtual

VIRTUAL

optional exception

EXCEPTION

%prec SEMI
ii

operator

OPERATOR operatorlist

optional foreach

foreach

foreach

FOREACH'(' field list restriction ')'
I}

foreach is used to describe a set of messages or instances

concepts

concepts concept

concept

:C tNK? fcrra-_na7e type spec where

80

constants
(1

I CONCEPT formalname formal_arguments where VALUE formalarg nts where

functions, defined with preconditions and postconditions
{}I

model data types have conceptual models for values
MODEL formalarcuments invariant
{ I

state machines have conceptual models for states
STATE formalarguments invariant initially
{ I

invariant invariants are true for all states or instances
INVARIANT expression_list
(}

initially initial conditions are true only at the beginning
INITIALLY expressionlist

transactions
transactions transaction

transaction

TRANSACTION formal name '=' action-list where

Transactions are atomic.
The where clause can specify timing constraints.

action list
action list ';' action %prec SEMI sequence

I action

action

action action %prec STAR unordered set of actions

IF alternatives F1 choice

DO alternatives OD repeated choice

actual name a normal message or subtransaction

EXCEPTICN actual name an exception message

81

aliternatives
alternatives OR guard action~list

guard action-list

guard
WHEN expression ARROW

tempo ra 15
temporals temporal

temporal
TEMPORAL NAME where response

Temporal events are trigged at absolute times,
in terms of the local clock of the actor.

The "where" describes the triggering conditions
in terms of TIME, PERIOD, and DELAY.

optional-formal -name
formal-name

formal-name
NAME~ formal parameters

formal_parameters parameter values are determined at specification time
'i' field list 'j' where

formai arguments arguments are evaluated at run-time
Cfield-list 'I'

82

field list
field list field
{ I

I field
{ }

field

name list ':' typespec

{)

I $' NAME ':' typespec
{ }

I '?'
I I

type spec
actual name name of a data type
I I

I '?

name{list
name list NAM

(i
NAfr

opt ionalactualname

actua: name

actual name

NAME actual parameters

actual parameters parameter values are determined at specification time
arcl:st

%prec SEM: ' must have P 1cwer
precewence tnan '

actualarguments arguments are evaluated at run-time

: ' arg list ')'

%prec SEMI must have a lower

precedence than ' C'

{ 8

83

arglist
arg_!ist ',' arg %prec COMMA

{)
Iarg

arg

expression

I pair
{ I

expression_ list

expression_list ',' expression %prec COMMA

I)
I expression %prec COMMA
{)

expression
quantifier '," fieldlist restriction BIND expression ')'

I actualname actualarcuments

I actual-name '@' actualname actual arguments
{}I

I NOT expression %prec NOT

I e
expression AND expression %prec AD

expression OR expression %prec OR

expression I>LIES expression %prec ILIES

expression IFF expression %prec IFF

expression '<' expression %prec LE

{e
expression '' expression %prec LE
I e
expression '=' expression %prec LE

expression LE expression %prec LE

expression GE expression %prec LE

(84

expression NE e - ,on %prec LE
{I

Iexpression NLT expression %prec LE

expression NGT expression %prec LE

expression NLE expression %prec LE

expression NGE expression %prec UE

expression EQV expression %prec LE

84

expression NEQV expression %prec LE

-, expression %prec UMINUS

expression '-' expression %prec PLUS

{ }
expression '-' expression %prec MINUS

ee
expression 'O expression %prec MOL

{ }
expression '/' expression %prec DIV

{I
I expression MOD expression %prec ID
{ I
expression EXP expression %prec E

expression U expression %prec U

expprssion PEND expression o m prec aPEND

expression IN expression %prec IN

expression %prec STA
*x is the value of x in the previous state

'S' expression %prec DOT
Sx represents collection of items rather than just one
sI = x, $s2} means si = union({xI, s2)

s= [x, Ss2] means sl. = append(Ix], s2)

expression RANGE expression %prec RANGE
x in [a .. b iff x ir. {a .. bI iff a <= x <= b

• [a .. b , is sorted in increasing order

expressirn '.' NA %prec DOT

expression '7 expression the %prec DOT

i' expression ')'

(' expression NNe ''pr expression with units of measurement
stanoard ti8e units: NANOSEC MICROSEC MILLISEC SECONDS

SMINUTES HOURS DAYS WEEKS

TI Tne current local time, used in temporal events

DELAY - ne %ie oetween the triggering event and the response

PER:OD The time between successive events of this type

literal

iitera" ' @' actual cne literal with explicit type

'?' 'A- un~efined value to be specified later

' '' 'At. undefined and illegal value

Iexpression THEN expression piddle cases ELSE expression Fl

85

midde cases

middle cases ELSEIF expression THEN expression

{ }

quantifier

ALL
{}I

SOME

NUMBER
{}I

ISUM
Is

I PRODUCT

1SET

MAX I MU M

I MINIMUM

I UNION

INTERSECTION
{}

restriction

SUCH expression

literal
:INTEGE2 LITERAL

REAL LITERAL

TCI-A LITERAL

SIRING LITERAL

'U NA!CE enumeration type literal
II

expressions I sequence literal

' expressions ' ' set literal

expressions ';' expression '}' map literal

A pair list '1' tuple literal

' pair one of literal

re-ator era s are sets of tulles

86

express-4ons
expression-list

pair~lis

pair ~lslipai

I NAME pair
I)

Ipair

pair
NAME BIND expression

operatcr2. ist
operator list operator symbol

I I

operator syymbol

NOT

AND

OR

I MP L ES

1FF

I GE

N-E

NL

87

I EQV

I MEOD

I EX

I APPEN

I I

I RA GE

~8

APPENDIX B - CODE.

This Appendix contains all of the code which was written or modified to implement

the type checker. There are eight actual files contained in this Appendix. Each fie hasa

unique purpose and the specifics of their use is detailed in the first file-makefile.

1. MAKEFILE.

spec: racrcs.r'4 rylibcat.c spec.m4
In/suns2/u.srlsuns2lrnerge/B!N/kscript -DAGLEXDEBUG -DAGYACCDEBUG

-t '%p 5000' -t '%a 5000' -t 'to 5000' -t Ite 5000' -s -x -z -k -e\

-g -v -d /n/suns2/usr/suns2/merge/BIN \
-cUStRL:B-v'/n/suns2/usr/suns2frere/kopas/thesisimp/rnylibcat.c\" spec.M4

mnacros.r,4: lib/head.m4 lib/attrib psg.r4 ryconst.n4 mymac.M4 lib/tail.M4
cat lib/hcad.r4 iib/attribps.mnq myconst.mn4 myrnac.m4 iib/taiil.m4 >rnacros.rr'4

cnrnod +r mnacros.m4

mylibcat.c: /nisuns2/usr/suns2/nierge/BIN/1ocallib.c mnylib.c

cat /r./suns2/usr/suns2/rnerge/BIN/locailib.c rylib.c > rnylibcat.c
chnmod -r mryibcat.c

output: myib.c :lib/attr4bps.r4 royconst.m4 mymac.m4 spec.n4
print rylib.c myconst.m4 rnymac.m4 spec.m4

cat 1ib/attrbpsg.rr4 >' attrib psg.rm4

print attribopsg .rn4

r attr-4b_psq.c'4

2. ATTREBPSG.M4.

' Macros for passing stuff around.

define (cassu.p_ 'S$' .$2 s = $S>,S2 _s)

define~passup_ 2, passup_)S', $2);
pass;p-SI, $3))

defi4ne (passup_ 3, passup_ 1(S, $2);
passup_!)S. $3);

pasr- -:_1 (S.-, $4))

deflne (passup_ 4, passup_ ($1, $2);

passup)n"S:, S3);
passup4$,_ $4);

passuP-)S', $5))

89

define(passup_5, passup_ .IS, S2);
passupUS$, $3);
passup_!(S. $4);
passup_ 1($1, $5);
passup_. ($'., $6))

define (passup_6. passup_ 11$1, $2);
passupl(S1, $3);
passup_1(S1, $4);
passupl(S1, $5);
passup_li$i, $6);
passup-l(S1, $7?))

define(passup_7, Passup_1(S1. $2);
passupl(S1, $3);
passupl($1, $4)
passup_lU$2, $5);
passupl($1, $6);

passupl($1, $8))

define(passup_B, passup_ 1(SI, $2);
passupl(Si, $3);
passupl($1, $4);
passup_,SI., $5);
passup_ 1)$1, $6);
passup_21S1, $7);

passujp_ :s.', $P);
passupl)S1, $9))

define)passdn_ 1, $1.$2_i = '$5' .$2-i)

define~passdn._2, passdn_I)S., $2);
passdn._ 1, $3))

define~passdnr.3, passdn_ 1151, $2);
passdn_ 1(S!, $3);
passd. 2(1, $4))

def-'ne~passd,_4, passdn_ T11(1, S2);
passdr_ 1($:, $3);
passdn_ 1($1, $4);
passdn'_ 21. $5))

define)passdr._ 5. passd._)Sl, $2);
passdn-_ 1SI, $3);
passdn_ 1)51, $4);
passdn_ 1($1, $5);
pasadn_ 1)Sl, $6))

define~passdn_6, passdn_ 1)$1, $2);
paSsdn_ (1)51 $3);
passdn _ (S1, $4);
passd- 215, $5);
passd.._ 2 SI, S6);
passdr _ 21SI, S'7))

definepassdn-'_, $1.S3 _i = '5$' .S3-i
$2.$31 = '5$' .$3-1)

90

define)passdn2_2, passdr)2_- 1($S, $2, S3);

passdi2 :-(s:, $2, $4))

defi'.e~passd.2 _3, passdn2_ 1$., $2, $3);

passdr.2_ us:, S2, S4);
passdrn2_ 1($, $2, $5))

define(passdn2_ 4, passdr.2_1)ISl, $2, S3);

passdn2_ l($1, $2, $4);
passdn2_ 1(S1, $2, $5);
passdn2_ 1($1, $2, $6))

define~passdn2_ 5, passdn2_ 1)S1, $2, $3);

passdn2_ 1)$1, $2, $4);

passdn2_ 1)$:, $2, $5);
passdn2_ 1($1. $2, $6);

passdr.2_ 1(51, $2, $7))

define(passdn2 _6, passdn2_- 1(51, $2, $3);
passdn2_ 1($1, $2, $4;
passdn2 _ 1)1, $2, $5);
passdn2_ 1)51, $2, $6);
passd.2 _ 1$1, $2, $7);
passdr.2 1($1, $2, $8))

defirne~passci"3_ 1, SI.$4-' = '$5' .54 _ ;
S2.$4 -4 = 'SS' .$4 _i;

$3.$4-4 = '$$' .$4-i)

defi'ne~passdn-',_2, passdn.3 _)SI, $2, $3, $4);
passd-.3_ 1)51', 52, $3, $5))

*dene(passdo3 3, passdrn3 1)51, S2, $3, $4);
passdn3 _ 1)$1-, $2, $3, $5);
passdn.3 _ 1)SI, $2, S3, $6))

def-,-e~passdo-3 _4, passdno3 _ 1)5, $2, $3, $4);
passdn3_)1 $2, $3, $5);
passd.3 _) $2, $3, $6);

passdr.31)$1', S2, $3, S7))

defire)passan3 5, passdr 3 _ 1)5, $2, $3, $4);
passanr3 1)51, $2, $3, $5);
passan3_ 1)51. $2, $3, $6);

passdnr3 _)$1, $2, $3, $7);
Passan1- _)1 S2, $3, $8))

definepassd'4_ "l, passcdr2_ l($1, $2, $5);
passdn2_ 1)S3, $4, $5))

define~passam.42, passdn4 !)$-, $2, $3, $4, $5);
passdrn4 _($1, $2, $3, $4, $6))

defire~passdr-5 1, passdn3_ 1)51, $2, $3, $6);
passc7.2 _ 1)4, S5, $6))

* Passovr 's ;Sec: for pass'ng-. a-trib,.tes from one non)-terminal to another,
*The order is (frcr,,tc,at:ibute, . ..

91

oefine(passovr_2, passovr_ l(Sl, $2, $3);
passovr-l($l,S2,$4))

def~netpassov:_ 3, passovr_ 1($1,. 2, $3);
passovr_ 1($1, $2, $4);
passovr_1($1, S2, $5))

define(passovr_4, passovr_ 1(51, S2, $3);
passovr_1(S1, $2, $4);
pa53ovr_1($1, $2, $5);
passovr_1($1, $2, $6))

definejpa3SOVr_5, passovr_1(S1, $2, $3);
passovr_1(S1, $2, $4);
passovr_ 1($1, $2, $5);
passovr_1($1, -12, $6);
passovr_1($1, $2, $7))

define(passovx 6, passovr_1($1, $2, $3);
passovr_1($1, $2, $4);
passovr_ l(Sl, $2, $5);
passovr_1($l, $2, $6);
passovr_1(51, $2, $7);
passovr_ 1(51, $2, $8))

Pass informnation about in pre-order.
"Parent is first argument, then children left to right.

" Attribute comes last. Macro appends _i and _s to attribute
" names as appropriate ...

define(passioC_ 1, '$5' .51_s = '$5' .51 i)

define(passiol_ 1, $1.S2 -i = '$$' .$2_i;
,$.2s - 51.52_5)

define(passio2_ 1, $1.$3-i = '$$' .$3_4
$2.S3 i = 51-.$3 s;

$$.3s = $2.S3_ s)

define(passic3_ 1, $1.$4 -i = '$$' .$4-i;
$2.$4 1 = SI.$4 s;
S3.$4--; = S2.$4-s;
'SS'.S4 _s = S3.s4 _s)

define(passioO_ 2, passioD_ 1(Sl);
passi.oC_1(52))

define (passioO_3, passioO_1($1);
passioD_ 1($2);
passioC_ 1(53))

def..ne(passioO_4, passioD_ 1($51);
passioO_ 1($2);
passioC_ 1(53);
pass-cC _ 1(54))

92

define(pass.'oC _6, passioc11SlI);

passioOC l(S2);
passi;oC_ 1($3);
passioC_ I ($4);
passloC_ 1)S5);

passioD_ 1(S6))

defirie(passiol_2, passiol_-1($1, $2);
passiol_1(51, $3))

define(passiol_3, passiol_ 1(51, $2);

passiol_1(51, $3);

passiol_ 1(51, $4))

define~passiol_4, passiol_-1($1, $2);

passiol_1)S1, $3);
passiol_1)51, $4);

passiol_1)S1, $5))

define~passiol_5, pass ol_-1($1, $2);

pass.iol_ 1)51, $3);

passi'ol_ (1)51 $4);

passiol_ 1)$1, $5);

passiol_ 1)51, $6))

define~passio2_2, passio2_ 1)l(1, $2, $3);

passio2 _ 1)1, $2, $4))

define)passio2_3, passio2_1(51, $2, 53);

passic2_ 1)51, $2, $4);
passi4o2 _ 1)5:, $2, $5))

define~passlo2 _4, pass~o2_ 1)51, $2, $3);
passic2 _ 1)5, S2, $4);

passio2 _ 1)1, $2, $5);

paSSio2_ !)$1, $2, $6))

deflne)passio2_5, passic?_)Sl, $2, $3);

passic2_ 1)S1, $2, $4);
passio2 $ 11 2, 55);

passio2_ 1)51, $2, 5E);
passlo2 _ 1)5, S2, $7))

deflne)passic3 _2, pass."o3 _ 1(SI, 52, $3, $4);
passi4o3_ 1)51, $2, $3, $5))

define~passio3_3, passio3 1)51, $2, $3, $4);
passio3 _ISl S 2, $3, $5);
pass.-o3_ 1(51, 52, $3, $6))

define (passic3 _4, passic3_ 1)51, 52, $3, 54);
pasLio3)5,$2, 53, 55);

passio3_ !)$1, 52, $3, $6);

passic3 1(S'I, 52, $3, S7))

93

defxne~passio3_5, passio3_ l(Sl, $2, $3, $4);
passio3_ l($l, $2, $3, $5);

passio3_ 1($1, $2, $3, $6);
passio3 _ 1($1, $2, $3, S$7);
passio 3_ I($1, $2, $3, $8))

I' pass up strings, concatenated together *

define (catstrup2_1, '$$' .$3_-s = $1.$3 -a S2.S3_s)

define(catstrup3_1, 'S$'.SA_s - SI.S4_ s S 2.$4-s $3.$4_s)

/* pass up maps, concatenated together */
define (catmapup2_1, 1$$1 .$3_ - = $1.$3_ -I+ $2.$3 _s)
define(catrnapup3_1, 1$$'.$4 1 s -S1.$4_ - 1 $2.$4 _s +1 $3.$4 _s)
define(passovr2x_I, passovrl(S1,S2,$4);

passovr_!(SI, $3, $4))

define(passvr3x_ 1, passovr2xl1($1,$2.$3,$5);

passovrl($1, $4, $5))
define(passovr4x_ 1, passovr2xlI(sI,$

2
,$3,$

6
);

pa-sotvr2x_1(S1,S4,$5,$6))
define(passovr2x_2, passovr_2($i,$2,$4,$5);

passovr_2($1,S3,$4,$5))
def--ne~passovr3x_2, passovr3xI($I, $2, $3, $4, $5);

passovr3xl($1, $2, $3, $4, $6))
define)passovr4x_2, passovr4x-l($1, $2, $3, $4, $5, $6);

passovr4xl($1, $2, $3, $4, $5, $7))

weave -- a partial version of passio.

weave assumes the first nonterrminal generates the attributc..

and all non-terminals listed use the product of the previc',

ronterminal, but the attribute is not returned to the parens:

nonterrrinal after it's use by the last nonterminal.

define~weave3_11, passovr($:,$2,$4);
passovr ($2, $3, $4))

define~weave4_ 1, weave3_ l)$_, S2, $3, $5);

passovr($3, $4, $5))

deflne(weave3 _2, weave3_ l($l, $2, $3, $4);

weave3_ i)$l, $2, $3, $5))

define(weave4 2, weave4 _l($1, $2, $3, $4, $5);

weave4 _l($l', $2, $3, $4, $6))

define~passio4 _1, $1.$5 1 = $ ',.$5_ i;
$2.$5 i =$1.$5 s;

$3.$5 i 52.$5 s ;

$4.$5-i =$3.$5_s;
'S$'.$5 -s = 4.$5 5)

define~passlo4_2, passio4)($, $2, $3, $4, $5);
pass.o4 1)$., $2, $3, $4, $6))

94

def!:ne(passIc5 1, $1.S6 i ='$ S

$2.$ - = i 1.$6 _ s;

$3.S6-1 $2.$6_-s;

$4.$61 $3.$6_ s;

$5.SG i $4.S6_ s;
'S$'.$6 s =$5.56_-S)

define (passio5_2, pass'o5 ' ($l, $2, S3, $4, $5, $6);
passio5_ (c'', $2, $3, $4, $5,.5S7))

define(passio6 1, $.$7-i =5'$, .$7_i;

$2.$7 1 - $1S.$7 _s;

$3.57_ i = $2.$7_s;
$4.$7 ji = $3.$7-_s;

$5.$7 _i = $4.$7 _s;

$6.$7 i = $5.$7_s;

'$$' .$7_s = $6.S7 _s)

define(passio6_2, pass--o6_ l(SI, $2, $3, $4. $5, $6, $7);

passio6_ 1($1, $2, $3, $4, $5, $6, $8))

3. MYMAC.M4.

/* Macros used for makin', declarations shorter.

define(IPS L__NO, ipsibi_class_s int->int;

ipstbl-names-s int->string;

ipstb.paramTss int->string;

ipstbl resul;-t s int->string;

4p stbl class i int->int;

ipstb)namesi int->string;
ipstbparams- in: ->st ring;
ipstbl result i in:_->string)

define(STBL_ INFO, stobl : string->string->string;

stol class 1 int-> int ;
stb. namnes i. in-->string;
stbilparans-I ln:->string;

stol result 4. int->string)

def4e(V$SIBILIY BLS. vi-sible types i :string->string;

vls~oetypes_s strlng->string;

vis ioenrarmes I string->str~ng;

v-*s-'b-e nanes 5 string->string)

deflneV (PMO-MXRF FBLS, ip_mncrrxref_s :string->string;
ip mcrxref IJ strinq->string)

*Macro's used for variou.s tasks including defining names, etc.

* mk simple & rrk comrplex are very much alike. mk_complex has arguments ($5)

95

def jne(,rk_s -rpledecl -_ o, Si1 s = ($2 -- NULL_S.'RING)

-($1 i ($3) -- NLLL STRING)
-> ($S3 [XREF DE'IMITER, i2s (S4),) +1 SI -i

'Vi'($3 [XREF DEL-MTER, i2s($4),

PATTERNDELIM:TER, Si1_i ($3)))) -1 $

define (ik_simple dci, S5 =($2 -- NULL_STRING)

-($1 ($3) -- NULL-STRING)

-> 1($3 [XR.EFDELIMITER, 12a (S4)]1)) 4) S1

1#1(($3 [XREFDELIMITER, 12s ($4),

PATTERNDELIMITER, $1 ($3)])) +j $1

define(rsk complex-dccl, $1_s - ($2 -- NULLSTRING)

->($1 - ($3) -- NULLSTRING)
-> (($3 [$5, XREFDELIMITER, 12s(S4) 1)) + 1 il.

'#'(($3 ($1_ i ($3) , PATTERNDELIMITER, $5,

X.EFDELIMITER, 12s ($4)1])1 +1I $1_i

define(ad-_ele-, $4 = Si HS[(2 :S3),

Macro's used for passing around the symbol table informaticon.

T -n' s is th',-e stuff that never changes, e.g. is not modified during progress

of type checkinrg a rodile.

* Symbol Table information Consists of

'. st in

* 2. s t'- na-res

* 3. stb _ result
4. stbl class

* 5. stbl _parans

I~symbol table building macros1

define~stbl-buildO, passi-ol -4)ip-stbl _class,i.p_ stbl _nam.es,ip_stbl _par.3ms,

4Pstbl'result))
aefine~stbl build:, passiol _4($-,i4p et-blclass 4 p_ stb' _ nam.es,ipstblparar-s,

ip stbi resul;t))

defne (stnolbuil4d2, passio2 _ 4($1, $2,ip_ stbl c-.ass, 4 stbl _ narnes,

ipstbL-paramrs, ip_ stblI result))

define~stbl~build3, passio3 _4)51,$2,$3,4 ~stbl _ class,ip stbl names,

~_stbl _pararns, I stlrsl))

dcfine~stblbuild4, passio4 _2($l,$
2
.5

3
,$

4
,ip_ stbl _class,ip_stbl_names);

passio4 _2($l,$2,$3,$4,ip_ stbl _params, ipstb.resu1t()

deflne(stbl buildS5, passioS_ 2($l,$2,S3,$4,$5,ipstb._class,ip_stbl _names);

passio5_2($l,$2,$3,$4$5,ipstblparams, ipastbliresult))

define(sthl-build6, passio6_-2)$l,$2,S3,$4,$5,Sr.ipstb1 _class,ip stbl names);

passio6_2(Sl,$2,$3,S4,S5,$6,ipstblparams, ip _stb _ result))

define~passn&'tbl, passdn_5($l, stbl, stbl result, stbl _class, stbl _names,

stbl '_params))

define~passo _ stb12, passdn2 _5(51-, $2, stbl, stbi result, stbl _class, stbl names,

stblpdrarrs))
define~passdn-stb.3, passd.3_5)$l, $2, $3, stbl, stbl _result, stbl class,

stbl names,stb _params))

96

oefie(passan svn4, passod'3-5(Sl, $2, $3, stbi, stbl _result, snhi class,
stbl names,stbl _params);

passdr;_ 5(4, stbi, stb _ result, stbl_- class,
stbl rames,stbl_params))

de5frn lpassoa sotl, passdn3 _5)S1, $2, $3, stbl, stbl _result, stbl _class,
sibi_names,stb) _params);

passdn'2 _5(S4, $5, stbl, stbl_result, sibl _class,

stb _names, stblparams))
define(passdn~ stb16, passdn3_5(Sl, $2, $3, stbl, otbi_result, stbi_class,

stbl-names, stbljarais);
passdn3_5(S4, $5, S6, sibi, otbl_result, stbl_class,

stbi-name s~stblparams))

4. MYfCONST.M4.

I" Symbolic Constants ased in Program -- Are always capitalized. '
define (NUL STR:NG, '-")

defive (WNDEFENEDTYPE, '"Type Name Undefined."')
de!7.ne(SEC-L:BRARYMODULE_type, *"type-')
def:neULCBAL TYPENAY=S, '"globalW")
define(CORREN MCDULE TAG, '"$current modulef"')
aefine(FALSE. C)
defineFUNCTON CLASS, 1

define(MACH:NE CLASS, 2)
define(TYPE-CLASS, 3)
defneDEENCION CLASS, 4)

define(INSTANCF CLASS, 5)

defineMSSAGE CLASS, 6)
define(CONCEPT CLASS!, 7)

define(CONCE?7 CLASS2, 8)
define(VARJABLE CLASS, 9)
define(TRANSACT:CN CLASS,

define(TEMORAL-CLASS,:)

aefineA7ERN 3EL:X:..?,
define (XREF DEI-X::ER, -*

aefin.e(ELEM :LM R
defin~e)REF_ SYMBCL,--

def~reJA?7ALD!:X

define)2AP CEL:M,

Errcrs & War7:nq Messages Gen-erated by Kodiyak code.

defe(WNlECARE:_'VOE, 3)

97

5. HEAU.M4.

d vert (-1)

*Copyright 1986, Robert Herndon

*(C) 1986, Robert Herndon

SModified by Robert Kopas 1989.

Purpose - Tro allow Consistency and implement macros needed

* for the type checker.

6. TAIL.M4.

* Many of m4's keywords are commonly used words. Remove

*all buil:. macro names to suppress any unexpected side-effects.

undefine ('#')
undef.ine('changequote')
undefine ('define')

undefine ('divnur,.')
undefine) 'dn''
unde fine C'durnpdef')

undefine)'errprint')

uindefine('va'C
undefine C'ifdef')

undefine ('ifelse')

undefine ('inc'ude')
undefine ('incr')

undefi4ne ('index')
undefine ('len')
undefine (maketemp')
iiiefine) 'sinclude')
ondefine) 'substr')
undefine(C'syscmnd')
undefine (translit')

undefine ('undivert')
divert (0)

undefine ('divert')
undefine) 'undefine')

7. MYLLB.C.

/I Symbolic Cons't Declarations -- It is extremely important that

these concur with those defined in mymac.m4

#define MYCHARLENHAX 10000

#define MAXXREE_-NUML-EN 20

#define PATTERN DELIMI1TER ''

#define XREFDELIMITER

#define E-EM-DEZ!M:TER
#defir.e END -ELEMENT~s) (*s ==ELEM-DELIMITER)

#define END ACTUALS(s) (*s '\'

#define ENDFORMlALS(s) (*s)CREF-DELI*IITER)
Odefir-e EN:D PAllEPN(s) ('s == AT:ERN-DELlM:TER)

98

#define UNDEFINED TYPE "Type Name Undefined."

Odefine CURRENT NCOUETAG "tourrert-module*"

#define MESSAGE-CLASS 6

/I errors -- those that are enumerated in mymac.m4 must concur with these
alsc.

#dineNM-EEIE
*define CNAEREDEFINED 2

#define UNDECLAREDTYPE 3
*define NONSPECIFIC-REFERENCE 4

*Warning Messages

#define UNRESOLVED_TYPE -l

mnt last _xref = 0;

" v get -new -xref has an argument named unused just to

" satisfy Kodiyak syntactic requirements.
" Everytire the routine is called, it will obtain a new, unique xref.

int vget new_xref(unused

char 'unused;

return (--last _xref);

char mychars :MYCHARLENMAX];

int rycnarlen = 0

wxrefs -dump (xreftostrrap)

xoo jeco xre ftost rrap;

int cur index;

xstrzno ocokupelem;

for (cur-inoex = ; cur-index <= last xref; cur_ index++)
lockup eler xirmapslkup~xreftostrmap, cur index);

printf(V\t%d ",car index);
Woutput lokup eler);
printf ("\n");

fflush (stdout);

wxrefi dump (xreftolntrap)

xobject xrefsoV rip;

0ot cur- -

int !ast,

for (cur-invt- our index <= last xref; cur index++)
loo';4eke- ximapilkup(xreftointmap, cur_ index);

prirn:5"\rd %din", cur index, lockup_elemr);

99

bismap _dump (mapname)
xobject mapname;

astruct xnmflatten f;

xobject p;
int defval;
int defined;
int range_val;

if (!XHEAP(mapname) 46 !XCPAIR(mapname)
xerr (Ismapi dump -- Non Map Argument \n", 0, 0, 0);

defined XFALSE;
defval =0;

xminit (fif, mapname),
for (p - xmnext(&f); p.op_type; p - xmnext(fif)

if (!XPAIR(p))

xerr("smapidunp -- Corrupt map. \n",0,0,0);

if (p.op_type[0].op type)

range val = *(p.op_type[l',ip type);

printf("\t Is - %d\n", xtstrflatten~p.optype0JO),rangeva2':

fflush (stdoift);

else if (!defined)
defval =*(p.op_type~l].ip_type);

defined =XTRUFE;

I I end for loop ~
printf("\t DEFAULTr- %d\n", defval');
fflush (stdout);

wsmaps dumr-p) rapname)
xobject mapname;

struct xmflatten f;
xobJect p;

xobject defval;

-nt defined;
xheap range val;

if XHEAP(mapname) && !XPAXR(mapnane)
xerr ("smapi dump -- Non Map Arguiment \n", C, 0, C);

defined = XFALSE;
defvai.op type = (xheap) 0;
xminit (fif, mapname);
for (p - xmnnext(&f); p.op_type; p - xmnext(&f)

if (!XPAIR(p))

xerr("smaps dump -- Corrupt map. \n",0,0,0);
if (p optype[0].optype)

range_va. = p.op_typell) .op type;
printf("\t Is -> ., xtstrfia1ten(p.op_ type(CD');
xheapprint(stdout, range-vail;
print!(\n)
fflush (stdout);

e.se if ('defin~ed)

100

defval = p.op_type2lJ;

defined = XTRUE;

1I end for loop /
printf("\tDEFA'JLT -> f);

xheapprint(stdout, defval);

printf('\n');

fflush(stdout);

/-

copy-pattern -- designed to copy a specific pattern to a destination
address. It returns the length of the pattern copied or 0.
if the pattern is a null string (or equivalent), a '\0' is copied.

-/

int copy pattern (daddr, saddr, maxilen)
char *d_addr, *s_addr;
int maxlen;

int charcnt = C;

for (;((*s addr !- PATTERNDELIMITER) && (*s addr '\O') && (max len > 0))
s_addr+ , daddr- , maxlen--, charcnt++)

ad addr = *s-addr;

if (max len > 0) (
*daddr = '\0';

return (charcnt + I); /* include '\O' a/

return (max len)

char *verror message(errhum, lineno, xa, xb, xc, xd
int err num;
int line no;
xobject xa, xb, xc, xd;

switch (err num.)
case NAN- REDEFINED:

return vfmt ("-" ERROR *** Line %d : Name Already Defined -- s
(by item %s)\n",

line_no, xa, xb);
break;

case CNAM-E REDEF:NED:
return vfmt("*** ERROR *** Line %d : Name Already Defined -- %s(%s)

(by item %s)\n",

lineno, xa, xb, xc);
break;

case UNDECLAREDTYPE:

return vfmt("*** ERROR *** Line %d : Type Name Undeclared -- %s\n",

line-no, xa);
break;

case NONSPECIFIC REFERENCE:

return vfmt("' ERROR " Line %d Do you mean s\n", lineno, xa);
case UNRESOLVE: TYPE:

return vfmt("'* WARNING * Line %d : Unresolved type used\n", line no);
break;

aefa-; :

101

break;

return

#define more sig_ patterns(s) (*3!-s \'

$define next pattern(s) for (;*s !-'\0';) \
if (*a++ -- PATTERN_DELIMITER)

break
#define next-element(s) for (;((*s !-'\O') 64 (*s !-.CEFDELIMITER)))

if (*s++ -- ELEM_DELIMITER)\
break

int num copied = 0;
#define cp2mychars(s) if ((num -copied - copyjpatternC&mychars[mycharlen],\

s, MYCHARLENMAX - mycharlen))) \
mycharlen - mycharlen + num copied;

else \
xerr("MYCHARLENMAX exceeded -- increase

M4YCHARLENMAX.",\
0,0,0)

'Name declaration routines.

'These routines check for the existence of a signature.
if the signature exists, they return an error message stating that

the signature cannot be redefined. Otherwise they return

xstring vcheck simple_decl (name map, name, line-no, xref2name map)
xobject name_map, name;
mnt line-no;
xobject xref2name-map;

char xref_number (MAXXREFNUMLEN];
char *patterns;
char *tmpargs;

patterns = xtstrflatten (xsmapslkup(name map, name));
while mnore sig patterns (patterns)f

if (*patterns == XREFDELIMITER) f /* empty pattern -- no args '
for (tmpargs = patterns; *tmpargs++ !-XREF_DELIMITER;

if (copy -pattern(xref -number, tnpargs, MAX_XREF_NUM_LEN))
return (xstring) verror_message (NAME_REDEFINED, line-no, name, ximapslkup(

xref2name map, atoi (xref-number)));
else

xerr("Exceeded MAXXREF_NUNLEN -- Increase value.. .",0,0.0);

else
next pattern (patterns);

return (xstring) -;

102

xstring vcheck_complex_decl (name Trap, name, f_args, line_no, xref2name_map)
xobject name map, name, f_args;
nt line-no;

xobject xref2name_map;

char *patterns;
char *new sig;
char xref -number[MAX_KREF_NUM_LEN];
char *imp name, *tmp args;
int retval;

!nycharlen - 0;
new sig -mychars;
cp2mychars(xtstrflatten(f_args));
patterns = xtstrflatten(xsmapslkup(name_map, name));
while more sig patterns (patterns)

if (match_f_fp (new sig, patterns))

for (tmp args = patterns; 'imp_args++ !- XREFDELIMITER;

if (copy pattern (xref_number, imp args, MAX_XREF_NUM_LEN))
tin;_name = &iychars~mycharlen);
cp2mychars bctstrflatten (name));
1* remove xref value and delimiter from args. '

for (tin; args = new sig; I('tmpargs XREFDELIMITER) £
(*tmp args '\));

tmp_args-;
'tin;_args = \;
return (xstring) verror message (CNAME_REDEFINED, line-no, name, new sig.

xirapsikup(xref2name_map, atoi(xref_number)));

else
xerr("Exceeded MAX_XREF_NUMLEN -- Increase value...",0,0,0);

elsej
next _pattern (patterns);

I V end while '

return (xstring)

/* type equal is sirint equality. No allowances are made (or should be)
for subtypes or equivalences. '

int type equal (argi, arq2)
char *argl, *arg2;

I' position both args at beginning of type. '

while (largl=*

while ('arg2-" 1:

for Q; 'arg! == *arg2; argl==, arg2-)
if (('arg! == EZEMDELIM:TER) 11('argl == REF_DELIMITER))

return U);
/I an exception ccralticn. '

if ((argl =- '\C') L& ('arg2 == XREFDELIMITER))
returnK();

returnM(I;

103

int match_ f_ fp (temp_new, temp_cid)
char 'temp_new, *temp_old;

while ((*temp new !- '\O') && ('temp_old X[REFDELIMITER))

if (type egual(temp_new, temp old))
if ((*temp new -- 1$1) 44 (*temp old =

next-element(temp_new);
next-element(temp_old);

else if (*temp new - '
/I a recursive analysis must be done here. '
return (0); /*for now '

else if ('temp_old 'S'1$)
/* another recursive analysis '
return (0); /*for now '

else
next-element(temp-new);
next-element(temp_old);

/* the following two cases are for 0 arguments. '
else if ('temp new == 'S')(

next element (temp new);

else if ('emp-old = '
next_element (temp old);

else

return (0)
I' end while *I

if ((*temnp new -= '\C') && ('temp old = XREF-DELIMIT'ER))
I' both at end of formals '
return (1)

return(0);

1' routines used in resolving types and references. '

char *myalloc (req size)
mnt req size;

char *p;
if ((p - (char *) allot (req_size)) -= NULL)

xerr("No more Dynamic Storage Available", 0,0,0);

retuJrn (p)

char *save string (s)

char *s;

104

char *P;

p = myalloc(strien(s) + 1);
strcpy(p. s);
return (p);

char *loose-string(s)
char *s;

free (s);
return (NULL);

/* at -- locate a character in a string '

char *at(s, seek-char)
char *s;
char seek-char;

for W;s !-'\O'; s+.-)
if Qs -- seek-char)

return (s);
return (NULL);

1* substr -- return a substring of the original string '
char *subszr (start _pos, last_pos)
char *start_pos, *last pos;

char *ret string;
char *tmpptr;

if (start pos == NULL)
return (NULL);

else if (last pos == NULL)
return (save_ string(start _pos));

else I

ret _string = myalloc(last_pcs - start pos + 2);
for (tmp_ptr = ret -string; start pos <- last pos ;last pos++, imp ptr++)

-tpptr = *startpos;

char *ejement-substr(s)
char *s;

c har *last_elem;

if ((last _eler = at(s, ELEMDELIMITER)) !=NULL)
return(substr(s, --last-elem));

return(substr(s, last _elern));

105

char *get arg type (actuals, cur_arg)
char *actuals;
int cur_arg;

int tmp;

for (trnp - 1: ((trnp !=cur_arq) £& TND ACTUA-LS(actuals)); tmp++)

next element (actuals);
if ENDACTtYALS(aciuals)

return (NULL,;
return (element-substr (actuals))

int is-pair(s)
char *s;

for 0; !END-FORNALS(s) && !ENDACTUALS(s) L& !ENDELEMENT(s) a++)
if W(s -- 1:1) 64 (*(s + 1)

return (1);
return (0)

int names match (elementi. element2)
char *elementl, *element2;

for 0; *elementl *eiement2 ;
'f (*elemenil =

return (1);
return(0);

int mystrcmp (argi, arg2)
char 'argi, *arg2;

for 0; ((argl -*arg2) 1I (ENDFO0RMALS(arg1) &&END ACTUALS(arg2l
if (ENDFORMALS(argl))

return(!);
return (0)

int pullout _xref (str)
char *str;

char *startpos, *end_pos;
char tmp_char;
int retval;

start p05 - at(str,)cREF_DF !MITIER);

end pos =at(str, PATTERN DELIMITER);
tmp char =*end-pos;

*end-pos '\'

retval = vs2i (start_pos);
*endpos - tmp-char;
return (retval);

106

int type match (formal, actual)
char *formal, *actual;

for (0 *formal++ !- :' A)
fVmove past name */

if (mystrcmp(formal, actual))
return(2

else if (mystrcmp(formal, UNDEFINED-TYPE) 11

mystrcmp(actual, UNDEFINED_TYPE)

returr-();

return (C);

function match fA

-checks if formals match actuals.

-returns: true or false.

int match_ fa (formals, actuals)

char *formals, *actuals;

while (!END_FORM'ALS(fcrmals) && !END_ACTUALS(actuals))
if (*ormals == 1$1)

if (is pair(actuals))

if (names-match(formals. actuals))
next element (formals);

next element (actuals);

else

next element (formals);
else if (type-match (formals, actuals))

next-element (actuals);

else

next element(formals);

elseJ.

if (is_pair(actuals)) (/* name must bind

if (:names-match(formals, actuals))

return (C)

else t/ advance actuals past bind V/

for Q; actuals+. ';

actuals-+;

I/* end if is_pair *
if (types_matct(fortals, actuals))

next eleinent(formals);

rext element (actuals);

else
return (C);

107

if (ENJ FORMALS(formals) &&f END_ACTUALS(actuals))
return (1)

return (C);

int Analyze_patterns(pattern string, actual args)
char 'pattern .tring;
char 'actual_args;

char 'imp ptr, 'curpattern;

if ((curpattern - pattern string) -- NULL)
return (0);

while (more sig patterns (curpattern))
if (miatchfa (cur pattern, actual-args))

return (pullout_xref (cur pattern));
else

next pattern (cur pattern);

return (0)

xstring vseek_ symbol (name, actual args, visible-names, stbl, stbl classes,
stbl names, line-num)

xobject name, actual_args;
xobject visible_names;
xobject stbl, stbl -classes, stbi names;
.nt line nut;

xstring patterns;
mnt xref-value, cur arg, tmp_xref_val;
char *arg_type_name;
char 'flat patterns, 'flat -actuals;
char *other-overloadings = NULL;

patterns = xsmnapslkup(name, visible names);
flat -actuals = save string (xtstrflatten (actual_args))
xref value = Analyze patterns(flat_patterns, flat-actuals);
cur erg = 1;

I' search all other modules for overloadings '
while ((arg type name = get argtype(flat -actuals, cur_arg)) NULL)

if (strcmp(arg type name, xtstrflatten(xsmapslkup(visible -names,
CURRENTMODULETAG))))

/* not current module 'I
patterns = xsmapslkup(xsmapxlkup(stbl, erg type name), name);
flat patterns - loose string(flat patterns);
flat patterns =save string(xtstrflatten(patterns));
tinp_xref_val = Analyze patterns(flat_patterns, flat -actuals);
if fximapilkup(stbl_classes, tmp -xref -val) - MSSAGE-CLASS)

if (xref-value && imp xref_val)f

f* multiple overloadings -/
if (Other-overloadings -=NULL)

other-overloadings -vfmt("%s or %"
xinaps.lkup(stbl _namres, xref value),

108

ximapslkup(stbl_names, tmp_xref_val));

else
otheroverloadings = vfmt('ts, ts,

ximapslkup(stblnames, tmp_xref_val), otheroverloadings);

else if (!xref-value)
xref value = tmp_xref_val;

curarg++;
/* end of while loop /

if (other_overloadings == NULL)
return vi2s(xrefvalue);

return verrormessage(NONSPECIFIC_REFERENCE, line_num, other_overloadings);

8. SPEC.M4.

version stamp $Header: spec.k,v 1.10 89/02/11 20:11:31 berzins Locked $
Kopas- Revised Grammar law v 1.11 05 April 89

Kopas- Completed Declarations 20 April 89

In the grammar, comments go from a "!" to the end of the line.
Terminal symbols are entirely upper case or enclosed in single quotes (').
Nonterminal symbols are entirely lower case.
Lexical character classes start with a captial letter and are enclosed in ii.
In a regular expression, x+ means one or more x's.

in a regular expression, x* means zero or more x's.
in a regular expression, [xyz] means x or y or z.
In a regular expression, [^xyz] means any character except x or y or z.
in a regular expression, [a-z] means any character between a and z.
in a regular expression, . means any character except newline.

.m4 inclusion files: mymac.m4
include(macros.m4)

! definitions of lexical classes

%define Digit :[0-9]
%define Int :{Digit}+
%defne Letter : [a-zA-Z]
%define Alpha : ((Letter)I(Digit) I_)
%define Blank :[\t\n]
%define Quote :["]

%defi:' Backslash
%defir. Char :([^"\\] (Backslash)(Quote)[(Backs

lash){Backslash!)

definitions of white space and comments

:(Blank!+

definitions of compound symbols and keywords

109

I had to add the following terminal names to get line numbers...
LBRACK :" ("

DOTMARK

SLASH
STARMARK -,"
MINUSMARK - -
PLUSMARK :
EQUALS :

GT
LT :

QUESTIONMARK

!end of my additions

AND :
OR :"
NOT n

IMPLIES : n>-
IFF :<a>"

LE
GE :>=

NE

NLT

NGT

NLE

NGE

EQV

NEQV

RANGE ..
APPEND
MoD :{Backslash}IMOD
EXP:-,

B:ND
ARROoi :

IF :IF
THEN :THEN
ELSE :ELSE

:IN
U :U

ALL :ALL
SOME :SOME
NUMBER :NUMBER
SUM :SUM

PRODUCT :PRODUCT
SET :SET
MAXIMUM :MAXIMUM
MINIMUM :MINIMUM
UNION :UNION
INTERSECTION :INTERSECTION
SUCH :SUCH(Blank}'THAT
ELSEIF :ELSE(Blankj(IF

AS :AS
CHOOSE :CHOOSE
CONCEPT :CONCEPT
DEFINITION :DEFINITION

110

DELAY :DELAY
DO :DO

END :END
EXCEPTION :EXCEPTION
EXPORT :EXPORT
FI :FI
FOREACH :FOREACH
FROM :FROM
FUNCTION :FUNCTION
GENERATE :GENERATE
HIDE :HIDE
IMPORT :IMPORT
INHERIT :INHERIT
INITIALLY :INITIALLY
INSTANCE :INSTANCE
INVARIANT :INVARIANT
MACHINE :MACHINE
MESSAGE :MESSAGE
MODEL :MODEL
OD :OD
OF :OF
OFERATOR :OPERATOR
OTHERWISE :OTHERWISE
PERIOD :PERIOD
RENA. RENA.ME
REPLY :REPLY
SEND :SEND
STATE :STATE
TEMPORAL :TEMPORAL

TIME- :TIME
TO :TO

TRANSACTION :TRANSACTION
TRANSITION :TRANSITION
TYPE :TYPE
VALUE :VALUE
VIRT'UAL :VIRTUAL
WHEN :WHEN
WHERE :WHERE

NTEGER LI: ERAL :IInt}

REALLIIERAL
...iA LITERAL .-,- -,-

STRINLI:TERAL :fQuoteH{Char}*{JQote.

N A :{Letter {Alpha -

cperatcr preceoe-ces
%,eft means 2-3.4 ;s (2+3)+4.

%left '; -IF, DC, EXCEPTION, NAME, SEMI;

%.eft ' ,CO" ;
%eft SUCH;
%left IFF;

%left IMP.LIES;
%left E ;

%,eft -

%'left NC;
% eft - CT, EGUALS, LE, GE, NE, NL-, NG-, NLE, NGE, EQV, NEQV;
%:-oassc: IN, RANGE;

%left U, APPEND;
%left LLSMA', M:NLSMAP', PLUS, MINUS;

11N

%left STARMARK, SLASH, MUL, DIV, MOD;

%left UM:NUS;

%left EXP;

%left '$', LBRACK, ' ', ' DOTMARK, DOT, WHERE;

%left STAR;

!attribute declarations
.Terminals First

BIND, ARROW, IF, THEN, ELSE, ALL, SOME, NUMBER, SUM, PRODUCT, SET, MAXIMUM,

MINIMUM, UNION, INTERSECTION, SUCH, ELSEIF, AS, CHOOSE, CONCEPT, DEFINITION,

DELAY, DO, END, EXCEPTION, EXPORT, F1, FOREACH, FROM, FUNCTION, GENERATE, HIDE,

IMPORT, INHERIT, INITIALLY, INSTANCE, INVARIANT, MACHINE, MESSAGE, MODEL, 00, OF,

OPERATOR, OTHERWISE, PERIOD, RENAME, REPLY, SEND, STATE, TEMPORAL, TIME, TO,

TRANSACTION, TRANSITION, TYPE, VALUE, VIRTUAL, WHEN, WHERE

%line : int;

QUESTION_MARK, LT, GT, EQUALS, PLUSMARX, MINUSMARK, STARMARK, SLASH,

DOTMARK, LBRACK j
%lin~e i nt;

%text string;

NOT, AND, OR, IMPLIES, !FF, LE, GE, NE, NLT, NGT, NLE, NGE, EQV, NEQV,

MOD, EXP, U, APPEND, IN, RANGE
%text string;

%line int;

1NTEGER_L:TERAL, REAL_L:TERAL, CHARLITERAL, STR:NGLITERAL

%text string;

%line int;

NAME

%text :string;
%ilne int;

!Now Nonterminals.

spec J

mod types s : string->string->string;

global types: string->string;
typetablei : string->string->string;

iprnxref_ s : string->string;

IP STBL INFO;
iprmcmxref!i : string->string;

ip lclzd mcmxrefs : string->string->string;

STBL :NFO;

error sgs s :string;

rodsze

112

rrodtypess :strrn9->string->string;

global _type _s: strino->string;
type taolei : S~rlng-)SLring->string;

iprnxrefs strino-5strinc;
iprnxref_ i strlng->string;

IFSTBL-INFO;
STBL_INFO;
iplclzd_mcnxref_s :string->string->string;

ipmcuref_ i string->string;

error~msgs~s string;

function
module names : string;
mxref-value s int;
mod typess : string->string->string;
type_table_ i string->string->string;

ipmxref_s string->string;
ip_rrxref i stri ng->string;

IFSTBL_ INFO;

STELINFO;

IFNCMRSF_TBLS;

error~msgss string;

machine

module-name-s :string;

rxref-value- a nt;
mod_types s :strang->strzna->string;
type_table i st ring->string->string;

iprnxrefs string->string;
ip_rrxref i stri ng->string;
IF STBLINFO;
STHZ INFO;
IFNCNXREFTBLS;

error~rnsgss string;

type
mocule -nam-e s :string;

mxref-value a int;
mod types s :str ing->string->string;

global _type_ 5: string-ostring;
type table i : string->string->string;

ip_macref_ s: string->strlng;
ip_mxref_i I:strlng->string;
AIF S7BZ INFO;

STBL_ INFO;

IF MOMXAEF_7HZS;

error massa : string;

113

definition
module-name-s :string;
mxref-value-s :2nt;
mod_types_ s :strinq->string->string;
type_table_ i :string->string->string;

ip_mxref s str ing->string;
4p_mxref_± string-string;
I?_STEL_INFO;

STBL INFO;
IPMC!OcREF-TBLS;

error_msgsas string;

instance
module-names string;

mxref-value-a int;
type_table_i string->String->string;

ip_mxref_a string->string;
4p_xref_ i string->string;
IP-STBL-INFO;

STBL-INFO;
m -MCMXREF-TBLS;

error_msgss :string;
d errors a string;

interface
module-name s string;
mxref-value a int;
type_table_± string->string->string;
env i :int;

VISIBILITYTBLS;

±9_mxref_ 5 string-)string;
±9_mxref_ ± string->string;
IP 5131. INFO;
STBLINFO;

errormsgss :string;
d-error s :string;

inherits

error_msgss string;

hideI

error_mags_ 5 string;

renames

error_75s ss :string;

114

imports

type-table. : string->string->srng;

VI SIB77ly _TBLS;

IPSTBLINFO;

STBLINFO;

error_msgss string;

export

error msgs_s string;

messages

VISIBILITYTBL-S;

IPMCMXR-F TBL-S;

IPSTBL INFO;
STBL -INFO';

error msgs_ s :string;

message

VISI-BILITY TBLS;

IPMCMXREF TBLS;

IPSTBL IlNFO;

STBL IN7O;

error msgs_s string;

response

xrefvaluei nl

VIS:B:::TY :Ezs;

IF-STBL: INFO;

STBL INFO;

error mnsgs_s string;

response-cases

xref-value4 in:;

VISIBILIIY TBZ-S;

lF STBL INFO;
STBL INFO;

errc:r-sqs s st1.

115

response-body
xref-value_ i :int;

VISIBILITYTBLS;

IPSTBLINFO;

STBLINFO;

error_rnsgs_s :string;

choose
VISIBILITYTBLS;

IPSTBLINFO;

STBLINFO;

error_msgss :string;

reply
xref-value i :int;

VISIBILITYTBLS;

IFSTBL INFO;

STBLINFO;

error_msgs_s: string;

sends
VIS:BILITYTBLS;

!P STBLINFC;

STBLINFO;

error_rnsgs_s: string;

send

VISIBILITYTBLS;

IFSTBLINFO;

STBL_ INFO;

error-msgs-s :string;

transition~
V:SBIL.ITY TBLS;

lP S:BL: :7o;

116

SIBLINFO;

error nmsgs_ s string;

formal_message
xref value s int;
message name s string;
message_fargs_s string;

VISIBILITYTBLS;

IP_MCMXREF_TBIS;

IP_STBL_INFO;
STEI. INFO;

d-error s :String;
error msgs_s: string;

actual_message 1
actual text s :string;
VISIBILITY TBLS;

IP_STBL_INFO;

STBL_ INFO;

error insgss : string;

where
WSIBLITYTBIS;

IPSTBLINFO;

STBIINFO;

error nags_s : strin~g;

optionally_virtua:
VISIB:L:TY TBLS;

IP_-STBL_ INFO;

STBLINFO;

error_msgs_s : string;

optional_excepticr

V:S:B:L::Y .B.LS;

:P STBIINFO;

SWBL_:NFn;

117

error_msgss string;

operator
xref-value-i int;
message fargsi :string;
line_s :int;

VISIBILITYTBLS;

IP_-MCMXREF_TBLS;

AIPSTBL_INFO;

STBLINFO;

error_msgss string;

optiona _ foreach
VISIBLIIYz'TBLS;

IPSTBL_INFO;

STBL_INFO;

error_msgss :string;

foreach

VISIBIL:TYTBLS;

IP -STBL_INFO;

STBL_INFO;

error_msgss string;

concepts
module Iname i string;
local_types-s string->string;
VISIBILITY_TBLS;

iT MCMXREF_TBLS;
AIPSTBL_ INFO;

STBL_INFO;

error_msgss string;

concept

local types _s string->string;

module -name -i string;

xref value- s nt

118

V:S:'BIL:TY TBL'S;

IP MCMOXREFTBLS;

IP STBL_ INFO;

STBL INFO;

error_msgss :string;
d-error-s :string;

model
VISIBILITY2'BLS;

IPSTBLINFO;
STBL INFO;

error_msgss :string;

state
VISIBILITYTBLS;

IPSTBLINFO;

STBLINFO;

error msgss :string;

VISIBILITYTB.S;

1P STBLINFO;
STBL INFO;

error msgss :string;

I? STBL INFC;
S-BL INFO;

error rnsgs s :string;

transactions
V:S:B:L:7Y TBLS;

:P S73L NFO;

S-BL -:NF-C;

error msgss s string;

119

transaction

d-error s -string;

VIS:BIWYTBLS;

IPSTBL_ INFO;

STBL_ INFO;

error~msgs~s string;

action_-list
VISIBILITYTBLS;

IPSTBLINFO;

STBL_INFO;

error_msgss :string;

action

VISIB:hITYTBLS;

IPSTBLINFO;

STELINFO;

error msgss :string;

alternatives
VIS:B!:JTYyB7S;

IPSTBL_ INFO;

STBL _INFO^;

error masgs_s :string;

guard
VISIBILITY TBLS;

IPSTBLINFO;

STB:L INFO;

error_nrsgss :string;

te.rporals
VISIBIL:TY IBLS;

120

STBI :NFC;

errcrmsgss :string;

temporal
xref value s :int;
d-error-s string;

VISIBILITYTBLS;

IPSTBL_INFO;

STBLINFO;

error msgss :string;

optional formal -name
name texts : string;
name-params s :string;
args_ i string;
env i int;
xref value s :in
line s :int;

VISIBILITY_T'BLS;

IPSTBL_INFO;

STEL-INFO;

errorms gss :string;

fcrmal-name

nam~e-text s: string;
naepararss string;
en~v i nt;

xrel valwes in
args_ i string;
line- s nt
signatures : string;

VISIBILITYTBLS;

!2 SIBLINFO;

STBI INFO;

error rmsgss : string;

d-errcr s ;string;

formal _parameners
nane parar's s string;

121

VISIBILITY_TBLS;

IPSTBL_ INFO;

STBZ_-INFOC;

error_msgs_s string;

formal_arguments
name_fargss string;
args text_s string;

IP STBLINFO;
STBLINFO;

VISIBILITY TBLS;

error_msgs_s string;

field_ list

fieldpattern_ s :string;

texts : string;

IPSTBLINFO;

STBLINFO;

VISIBILITYTSLS;

error_msgs_s: string;

field

fieldpattern_ s :string;

txef string;
xrfvaluje s :int:

d-error-s :string;

IP STBL_ INFO;

STBL INFO;

VISIBILITYTBLS;

error_msgs_s : string;

deciname list

na-me type_text_4 i string;
namne type_value_ i :string;
fieldpattern_ s :string;
xref-value-s :int;
text _s :string;
d-error_s :string;

IPSTBL_ INFO;
STBZ_ NFO;

VISIBILITYTBZs;

error rsgss : st-rlna;

122

type-specI

type name_text _s string;

type name value s string;

12_STBL_INFO;

STEL_INFO;

VISIBILITY_TBLS;

error_msgss :string;

tmpmsg :string;

name_ list,

error_msgss :string;

optional actual name

full name -s :string;

actual_params -s :string;

actual_name-text_s :string;
line-s :int;

12 STELINFO;

STBL_INFO;

VISIBILITYTELS;

error~m sgss :string;

actual-name

actual name text s :string;
full-name-s :string;

actual_params_ s :string;

lines s nt

A12_STBLINFO;

STBLINFO;

VISIBILITYTBLS;

error msgss string;

actual-parameters

actualparaoss :string;

:P s-a ST INFO;
STBLINFO;

V:SIB:L" W7BS;

error r sgss :string;

123

actual_argumirent.s
fuliargss string;

IPSTBLIN'O;

S1HZ INFO;

VISIBILITYTBLS;

error msgs 5 string;

value arguments
xref-value_i int;

IP STHZ INFO;
57HZ INFO;

VISIBILITYTHIS;

error_msgss :string;

arg_1list
arglist-text-s :string;

IP_57HZ_-INFO;
STBI -INFO;

VISIBILITYTBLS;4

errormsgss :string;

arg
arg text -s :string;

IP_5731 INFO;

5721 -INFO^;

VISIBILITY THI-S;

error_mrsgss string;

expression- list
xten_type_ s string;

IP_57HZ INFO;

5721 INFO;

V:S:B:LITY THIS;

errormsgss :string;

124

express~on
xter._ type s :string;

:P SIBL INFO;
STBL-INFO;

VISIBIL-ITY TBLS;

error_msgs_s :string;

middle cases

IPSIBLINFO;

SIB'L INFO;

VISIBIL'ITYTBLS;

error rrsgss s string;

rest-r~cttor
IP 51HZ INFO;
SIBLINFO;

V:S!HIZIIYIBL'S;

errorr~ sgss :string;

:!era.
x-,en.type s :string;

I? STBL INFO;

S73L INFO-;

V:SIBlLIIY- BLS;

errcrirsgss :string;

expressions

xte- types :string;

IP STBL INFO);
S7BL-INFO;

VISIBZI'7Y I3ZS;

error Ttsgs s :string;

125

pair_ listI
xt-entypes :string;

IPSTBLINFO;
STBLINFO;

VISIBILITY TBLS;

error_msgs_ s :string;

pair
xten type s :string;
types :string;

IPSTBL_ INFO;

STBL INFO;

VISIBILITY_ 'BLS;

error_msgs_s :string;

operator_ list
xref value i :int;
message fargsi-' string;
line_ s :int;

STBL INPO;

IPMCMXREFTBLS;

d error-s :string;

error msgs_ s :string;

o~peratorsyb-j

ooera~ortexts :strjng;
line s : nt;

*produc~i~ns of the grarrnar

start
spec

Sl.type-tabie i = Si .-odi_types s +!
f(GLOBAL_ TYPE_NAMES Si.globai_types))

S:.P_ stb!_class i = U? irt FALSE)
SI.ip_ stblnamnes i = in',t NULL -STRING) }

S1.ipst-bl params _ i = 1(? int NULL_-STRING)
SI .t _ s-b res-.:_" I = ?itNL SRC

126

$s:.stbl -names -.=S$. ip_ stb _ nar-es_s;

SI.stbl classi = SI.ip stb!_class s;

$'.st-b _pararrcsi = Sl.ip_ stb'_ params_ s;

Si.stbi resultI= S'-.4p stb. -result _ s;

$' .4 pmc.,nxref_ i = $.ip rnxref -s;
$I.stbl_ i = S1.ip lclzd_mcmxref s;

!test values
'Ioutput("TYPES\n1l. Global\n");

Iksmaps dump(Sl.type -table -i (GLOBAL_-TYPENAMES));

toutput ("2. From module testl\n");
%srnaps dump(S1.type tabl'e-i ("restl"));

%output ("3. From module test4\n");
%smaps dumnp (SI.type table j. ("test4"))

%output('4. From module test?\n");
%smaps dump(Sl.type -table_-i ("test7"))

toutput("\n\nMODULE XREF \nModule Testl\n");
%smaps -dump(SI.stbl_ i("testl"));

toutput (Module test4\n-);

%smapsdump(Sl.st.bl_ i("test4"));

%output ("Module test7\r.");

%s:apsdump(Sstbl-i (test7"))

dun,-p xref info & error messages.

%output (n\n\n");

%outPut(U~--- \n');
%oujtput-("- Error Messages & Cross Reference info -\n");

%output((-- \n);
%cutput(S-.errcr_msgs_s);

%output("\n\nCrob.s Reference to Names.\n");

%xrefs_du-mp(SI.stbIl-names_- i);
%otpu("\n\nCrcss Reference to Name Classes.\n");
%xref4_du-Tp(Sl-.stbl_- class -I);

%cuput"\nncrssReference to Name Parameters.\n");
%xrefs durnp(Sl.stbl-para-rs i-);
%output(n\n\nCross Reference tc Name Results.\n;

%xr-efs diurp(Sl-.stbl _resu-lt _i);

spec
spec md.

catmrrapu;p2 _ .(S,$2,mcc types);
catmrapp2(S-,S2,global-_type);

'module names.
passovr c(S:, $2, 4-'_mxref);

passjp_ (. 4p_r-.x.ef);

syrbc! ta!le

s-ic oui-d2 (S S2);

pasdn.Dt.2 (S-, S2);

pass cown, needed type trarslations.
passan2 _ ,($', S2, type table);

passdr.2- (S-, S2, i nxe~

127

catmapup2_ 1i$1, $2, ip_1.clzdmcmxref);

SS.error_msgs_ s = [$'..errcr_msgss. $2.error-msgs_s);

$$.mod -types~s =(? string (? string :UNDEFINEDTYPE))));
S$.global types : (string :UNDEFINED_TYPEI);

!module names S features.
SS.ip-mxref-s - (? :string NO-.LSTRING));
S$.ip_lclzd-mcmxref-s - ((? string (7 string :NULL-STRING));

!symbol table
stbl-buildOO);

SS.error_msgs s

*A production with nothing after the "I" means the empty string
*is a legal replacement for the left hand side.

module
function

passupl(Sl, mod_types);
SS.globaltypes = ((? :string UNDEFINED_TYPE))

passdnl!(S1, type_table);

!symbol table
passioll(Sl, ipmxref);
stbl-buildl (Si);
passdr-.stbll (Si);

passdnl(Si, ipmcmxref(;
SS.ipIclzd-mcm-xref-s = (SI.module name s SI.ipmcmxref-s));

passupl(Sl. error-msgs);

machin~e

passupi ($1, mod types);
SS.gl'obal_type_s = 1(? :string UNDEFINEDTYPE) I
passdrnl ($1, type table);

symbol table
passioll($1, ipmxref);
stbl-buildi (Si);
passdnstb.'l (SI);

passdnl ($, ipmcmxref);
S$.ip_ lclzd_mcmxref_s - {(Sl.module_names $l.ipmcmxref s) I;

passup 1($51, error msgs);

128

t ype

passup_2(S'I. mod types, global_type);

passdn_ l(S., type_table);

symbol table
passiol-l(Sl. ip~mxref);

stbl buildi (Si);

passdn-stbll ($i);

passdnl (S, ipmcnxref);
SS.ip-lclzd-mcmxref-s = {(Sl.module-name-s $1. ip_mcmxref-3));

passupi (51, error rrsgs);

Idefinition

passupl(S1, mod_types);
$S.global_type_s = ((? :string UNDEFINED_TYPE))
passdnl(SI., type table);

symbol table
passiol _ (SI, iprrxref);
stbl bu--ldl (SI);
passdn-stbll ($!);

passdn_l(S1, ip_rncmrxref);
SS.ipltlzd-mcmxrefs = { (SI-.mod.U:e name s Sl.ip mcmxref s)i;

passupi (SI, error msgs);

Iinstance of a generic module

SS.mod -types_ s J(? :string (? string :UNDEFINEDTYPE)il};
$S.g-lobal-_type_s = f(?: string UNDEFINED_'YPE) }
passdn_1-(51-, type table);

syr-bcl table
passiol _ (S-, -jp_Yrxref');

passdin_ sb 1l(sI);

passdn l(SI, ipmcrxref);
S.i'plclzd_mcmxref-s - (Sl.module_name_s S1.ip_mcmxref-s));

passiup-l(SI error -msgs);

funct ion

0ptiona ly vIrtual- FUNCT:ON interface messages concepts END

passjp_2(S3-,mod,.le name, rrxref-value);
passcvr_ .tS3, S5, mrodulIe -name);

1129

$SmOd-types-s =($ (3module namne s :S5. local_types s))

passdnl (3, type table);

passio2_1($4,S5,ip_mcmxref);

!symbol table
passioll($3, ipmxref);
sibl build3(S3, $4, $5);
passdn-stbl3(S3, $4, $5);

!visibility information
passovr2x-2($33 $4, $5, visible-types, visible-name.);

$$.error-msgs_s - [$3.error_msgss, S4.errormsgs-a, $S.error msgs a);

Virtual modules are for inheritance only, never used directly.

machine
optionally_virtual MACHINE interface state messages transactions temporals

concepts END

passup-2(S3,module-namre, mxref-value);
passcvr-l(S3, $8, module-name);
$3.env i = MACHINECLASS;
S$.mod-typess = {($3.module names : $8.local_types_snl;

passdnl($3, type table);
passio2_l($5, $B,ip-mcmxref);

symbol table
passiol_l($3, ipmxref);
st~bl build6(S3, $4, $5, $6, S7, $8);
passdn-stbl6($3, $4, $5, $6, $7, $8);

!visibility information.
passovr 2(s3,$4,visible types, visible_names);
passovr2x_-2(S4,$5,S6,visible_types, visible-names),
passovr2x_2(S4,$7,$8, visible types, visible-names);

SS.error msgs s =)S3.error_msgs s, S5.error-msgs_s, $8.errormsgss];

type
optionally_virtual TYPE interface model messages transactions temporals concepts

END

passup-2($3,module-name, mxref-value);
passovr 1($3, $8, module name);
$3.env -i =TYPECLASS;-
$$.mod -types s - 4l$3.module name -s :$8.local_types a
$S.global_type_s = {($3.module-name-s :$3.module-name-s),

(? :string -UNDEFINEZ_7YPE))

passdn_l($3, type table);
passio2_ l($5, $8, ip_mcmxref);

symbol table
pass~czl l)S3, .4p m-xref);

130

stbi build6(S3, $4, $5, $6, $7, $8);
passdn-stbl6($3, $4, $5, $6, $7, $8);

!visibility information.
passovr_2(S3,$4,visible_types, visible_names);
passovr2x_2(S4,S5,S6,visible_types, visible-names);
passovr2x_2($4,$7,S8, visible_types, visible_names);

$$.error_msgss - t$f3.error_msgs a, $5.errormsgs_s, SS.error msgs all;

definition
DEFINITION interface concepts END

passup_2(S2,module_name, mxref_value);
passovrl($2, $3, module_name);
$2.env -i = DEFINITION_CLASS;
$$.mod-types a = (($2.module-name s :$3.local types s));

passdni ($2, type table);
passioll ($3, ipmcmxref);

!symbol table
passiol_ 2152, ipmxref);
stbl _build2($2, $3);
passdn_stb!2($2, $3);

visibility information.
passovr_2(S2, $3, visible types, visible_names);

$S.error msgs_ s = [52.errormsgss, S3.error_msgs_s];

instance
INSTANCE formal-_name EQUALS actual_name END

S$.module name Is = $2.name -text-s;
S2.env_ - TNS7ANCE_CLASS;
S$.mxref value s = S2.xref value s;

passioC_ I(ip mcmxre-);

symbol table
$S.d-error-s = check_simple_decl($$.ipmxref_i, S$.module_names, $2.lines,

$$.stbl-names_i);
mksimple_decl_io$$.ip_mxref, $$.d_errnr_s, $$.module name_s,

$$.mxref value_5);
stbl build2($2, $4);
passdn_ stbl2($2, $4);

visibility information.
$2.visible_types_i - $$.type table_i (GLOBAL_TYPE_NAMES);
S2.visible-names_ i = $$.stbl -i($$.module-name_s);
passcvr_2($2, $4, visible types, visible_names);

$$.error msgs a = SS.d_error_ a;

131

I INSTANCE foreach actual-name END

Check this entire section of code for interfaces...
M$module -name -s = $3.actual-name-text-s; !check this w/ Prof. B.
SS.mxref-value-s - get new xref (S3.actual -name_text_s);
SS.d-error-s = check simple decl (S$.ip mxref-i, $S.module_name_s, 53.lines,

SS.stbl-names_i);
mksimple_decl_io($S.ipmxref, $S.d_error_a, S$.module_name_s,

$S.mxref-value-s);

passioO_ (ipmcmxref);

!symbol table
stbl-build2 ($2, 3);
passdnstbl2 ($2, $3);

!visibility information
S2.visibletypesi = $S.type_table_i (GLOBAL_TYPE_NAMES);
$2.visible-names-i - SS.stbl_i (S$.module_name_s);
passovr_2(S2, $3, visible_names, visible types);

SS.error_msgs s = $$.d_error_s;

*For making instances or partial instantiations of generic modules.
*The foreach clause allows defining sets of instances.

interface
formal-name inherits imports export

SS.module name s = Sl.name-text _s;
S$.mxref-value-s = Sl.xrefvalue_a;
$l.args-i=";
passdn_l(SI, env);
$S.d-error-s = check_simple_decl(SS.iprnxref_i, SSmodule_name_s, Sl.lirne s,

SS.stbl-names_ il;
mksimple_decl_io(SS.ipmxref, SS.d_error_s, $S.module-name_s,

$$.mxref value-s);

!symbol table
stbl build2(SI, $3);
passdr._stbl2($1, $3);

visibility information
Sl.visible_types_ i = $S.type_table_i (GLOBAL_TYPE_NAMES);
$l.visible-names-i = $$.stbl_i ($$.module_name_s) +1

((CURRENT_MODULETAG :S$.module-name_s));
$3.visibletypesi = $l.visible_types_s +1

SS.type table_i ($S.module name s);
passovr_ l(Sl, $3, visible-names);
passup-2(S3, visible types, visible_names);

SS.error_msgs 5 = [$$.d_error_s, Sl.error_msgs_sJ;

This part describes the static aspects of a module's interface.
The dynamic aspects of the interface are described in the messages.
A modul.e is generic iff it has parameters.

132

The parameters can be constrained by a WHERE clause.
A module can inherit the behavior of other modules.
A module can import concepts from other modules.
A module can export concepts for use by other modules.

inherits
inherits INHERIT actual-name hide renames

Ancestors are generalizations or simplified views of a module.
* A module inherits all of the behavior of its ancestors.
* Hiding a message or concept means it will not be inherited.
* Inherited components can be renamed to avoid naming conflicts.

hide
HIDE name-list
(1

Useful for providing limited views of an actor.
Different user classes may see different views of a system.
Messages and concepts can be hidden.

renames
renames RENAME NAME AS NAME
(1

Renaming is useful for preventing name conflicts when inheriting
from multiple sources, and for adapting modules for new uses.
The parameters, model and state components, messages, exceptions,
and concepts of an actor can be renamed.

imports
imports IMPORT namelist FROM actual name

!visibility information.
passioD 2(visibletypes, visiblenames);

!for now -- until importation implemented.
stbl buildl ($1);

passdn-s-bi(SI);

!visibility information.
passioC_2(visible_types, visiblenames);

!symbol table
stbi buildC;

export
EX?3R nar-e list

133

messages
messages message

passio2l1($l, $2, ip-mcmxref);

:zy.bol. table
stbl-build2MS, $2);
passdnastbl2 (Si, $2);

visibility Information
passdn2-2($l,$2, visible types, visible-names);

!error messages
$$.error_msgs_s - [Sl.error-msgs_s. $2.error msgs_sl;

passioOi (ip_mcmxref);

!symbol table
stbl-buildO();

error messages
$$.error_msgs_5 fl

m~essage
MESSAGE formal-message operator response

passio2l1($2, $3, ip-mcmxref);

passovr_2($2, $3, xref -value, message fargs);
passovr_ l(S2, $4, xref-value);

symbol table
stbi _build3($, $3, $4);
passan-stbl3(S2, $3, $4);

!visibility information
passdr-2($2, visible types, visible -names);
passovr_2(S2, $4, visible types, visible-names);

!error messages
$$.error msgs s = [$2.error_msgs-a, $3.error-msgs_s, $4.error_msgs_sl;

respon.se
response body

passdn-l)$l, xref_ value);

symbol table

134

passdn_ stbol(S-) ;

visibi-ity information

passan_2($1, visibl'e_ ypes, visible namnes);

error messages
passup_1($1, error_msgs);

I response-cases

(~d _~S1. ,xref_"-luei;

symbol table

stbl buildi ($1);

visibility information

passdn_2(Sl, visible types, visible names);

error messages

passup_ 1($1, error msgs);

response_cases

W14EN expression_ list response_body response cases

passdrn2_ -,$3,$4, xref-value);

symbol table

stbl-build3(S2, $3, $4);
passdn_ stb'3 ($2, $3, $4);

visibility information
passdn3_2(52, $3, $4, visible types, visible-names);

error-messaces
SS.error_mrsgs_ s = [S2.e.rrormsgss, $3.error_msgs_s, $4.error msgs 5';

CTHERWISEE response-body

passdn_ 1)52, xref value);

.sym-bol table

passdn_ stbll)(S2);

.visibillty information

passdn_2(S2, visible types, visible-names);

error-messages

pass;pI(S2, error_msgs);

response_body

c-ocse reply sends transition

passan_ 1)52, xref-value);

svr-C. ta-tie

135

stbl bu.Jld4($l, S2, $3, $4);
passdn_stbl4($'., $2, $3, 54);

!visibillty information
passdr._2($l, vis.4ble types, visible-names);
passovr3x_2(Sl, $2, $3, $4, visible_types, visible-names);

error messages
$$.errormsgss - ($l.error_msgs -s, S2.error msgs_s, $3.errormsgss,

$4.error_msgs 5];

choose
CHOOSE '(' field-list restriction)

!symbol table
stbi build2($3, $4);
passdn-stbl2 ($3, $4);

visibility information
passiol _2($3, visible types, visible-names);
passovr_2(S3, $4, visible types, visible -names);

error messages
S$.errormsgss =)$3.errormsgss, $4.error_msgs 5];

symbol table
stbl-buildO)

7visibility information
passioC_2(visible types, visible namnes);

error messages
S.errormsgss

reply
REPLY actual-message where

!symbCtol table
passio2_ 3($2, $3, ip_stbl_class, ipstbl _names, ipstblparams);
S2.ip-stbj. _result i = $$.ip_sibl_ result _i +1

{($$.xref_value_. :
$2.actual_text_ 5));

passovr_ 2(S2, $3, ip_stbl_result);
passupl($3, ipstbl_- result);
passdn-stbl2 ($2. $3);

!visibility information
pass&'.2_2($2, $3, visible types, visible_namnes);

error messages
$$.errormrsgss = [$2.errormsjss, $3.error_msgs_ 5];

GENERATE actual_message where used in generators

syr-bc! table

136

pass~o2 _ 3($2, $3, ipstbl'class. ipastbl_names, ip_stbl_parans);
S2.ip-stbl _result _ - SS.ip_stbl_result _i +1

($$.xref-value i *S2.actua. text s));

passovr_ l(S2, $3, ipstbl result);
passupl1($3, ip_ stbl_ result);

passdn-stbl.2(S2. $3);

visibility information

passdn2_2($2. $3, visi4ble_types, visible-names);

!error messages
$S~~z~r ...~s =[$2.error_msgs-s, $3.error_msgbs]s;

stbl _buildOO);

!error messages

S$.errormsgss

sends
sends send

s tbl _build2)SI-, $2);
passdn-s-b12($l, $2);

visibllity information
passdn2_2(SI-, $2, visible types, visible-names);

I.ezr ,r m essages

$$.errcr msgs b = [$l.error itsgs-s, $2.error_msgs_s);

error messages
$S.error_mnsgs_ s=

send

optional-foreach SEND actual_message TO actual name where

stbi build4)$l. $3, $5, $6);

passdn-stbl'4(Sl, $3, $5, $6);

visibility information

passdin4 _2(S, $3, $5, $6, visible types, visible-names);

error messages
SS.errormrrsgss = [S3.error_msgs_ s, $5.error_msgs_ s, S6.errormsgss-;

tansit~on

TRANSI-ON expression-lis" for describing state changes

137

szrbl _b ;iJd ($2);
passdn _sto~l($2);

visibility information
passdn_2($2, visible types, visible names);

error messages
passup_1(S2, error msgs);

stbl-buiid~o;

error messages
$S.error_msgs_s

formal_message
optional exception optional-formal name formal arg-uments

S$.message_name_s =S2.name -text_s;
$$.message fargs s =$3 .name-fargss;
S2.args_ i =$3.args_text_s;

S2.env i MESSAGECLASS;

passup)--$2, xref_value);

mkxcorplex_decl(SS.ipmcmxref, SS.d -error -s, $2.name text_s,
S2.xref-value-s, S3.namefargss);

symbol table
stb-._build2(S2, $3);
passdn-stb.'2(S2, $3);

visibility information
passio2-2($2, $3, visi4ble types, visible-names);

.error m~sszges
SS.d error-s = check coplex_decl(SS.ip_mcmxref -i, S2.name -text s,

S3.namefargs_s, S2.line_ s, S$.stbl names-.'I
SS.error_msgs_ s = [S2.error_mnsgs_ s. S3.error-msgs_ s];

act.:al _ressage
optionalexcepticn optional-actual name formal_arcjuments

S$.actual-text _s (S2.f-ill -name s =

-> 3.name fargs~s
0($3.name_ fargs_ s

-> 2.full name s
1$)2.f'ili _name_ s, ""
$3.name ±args 5,")"];

stbl build2(S2, $3);
passa sb.2 (S,3);

v-sibll ity Information-

138

passdn2 _2(S2, S3, v:isible types, visible-names);

error messages
S$.error msgs s = !$2.error_msgs-s, $3.error msgs si;

where

WHERE expression_-list

sitbi-buildi ($2);
passdn-stbll ($2);

!visibility information

passdn.2($2, visible types, visible-names);

error_messages
passupl($2, error_msgs);

I %prec SEMI must have a lower precedence than WHERE

s tbbL; I ildC;

error messages

SS.error rr.sgs s=

opt-onal,y_%. 4rt -,a1
VRT U AL

optlonal_exception

EXCET:ON

%prec: SEM:

operator
O?ZRA'OR operator -s

passain 2($2, xref value, message fargs);

passiol _: l($2, :.p_rmcrxref);

symbol table

stbl _buildZ^(';

passan _stb.'l(S2);

error messages
passupl(S2, error risgs);

passioZ _. (-r_.r-nxref);

symbol table

139

S$.error~rnsgss

optional foreach.

foreach

stbl-buildi ($1);
passdn_stbll($l);

!visibility information

passdn_2(Sl. visible types, visible-names);

error messages

passup_l(Sl, error msgs);

s tb _buildO (I

error messages

$S.errormrsgs~s

foreach

FOREACH '(' field-list restriction)

s tbl build2(S3, S4);

passdn _stbl2($3, $4);

!visibility information
passio2_2($3, $4, visi ble types, visible names);

error messages
SS.errormrrsgss = [$3.error-rmsgs_ a, S4.error_msgs_s';

foreach -'s used to describe a set of messages or instances

concepts

C oncepts con~cept

passdn2_l(SI,, $2, module name);
cat-mapup2_ I (Sl, $2, local types);
passio2_ 1($!,$2, 4_ mcmxref);

symnbol table

stb. b ild2(31, $2);
passdn_ stbl2(S1, $2);

!V15s4bili1ty infcrmation
passdn2_2($l, $2, visible types. visible-namnes);

error messages
SS.error _msgss = [Si.error mags_ a, S2.errormr-sgs_ 5];

140

SS. local types s (2 strtrg UNDEFNED TYPE) };
pass.;ohI_(1p_rrcr-xref);

sy-rbri tabl.e

!errror messages

$S.error_msgss

concept

CONCEPT formal-name :'type spec where

constants

SS.local_types s =($4.type name_text_s -- SPEC_LIBRARY_MODULE type)
->{(S2.name-text s :[S2.name-text _s, "@, S$.module-namnei])

(2 string :UNDEFINEDTYPE)I

passup-l(S2, xref -value);
SS.d error s = c neck-si--ple-decl(S$.-pmcmrxref_i, S2.namne_text s, S2..lne s,

SS.stbl-names_ i);

r'"_sirrpe-caeclio(SS.ipmcmxref, SS.d-error-s, $2.namne text-s,
S2.xref-value s);

!sy-rbc! table
S2.arusl = "
S2.ernv i = CONCEPTCLASS:;

stblbujd3 (2,$4, S5);

passdr._stbll -($2, S4, SS);

!v is il-Ii t y i n fc r-rnat14o r.

passdr 2(S2, visitnle types, visible -names);
passcvr2x-2(S2, S4, S5, v;.sible types, visible-names);

errcr r.essaaes -- in.rcrrplete for now ...
SS.errcr nsqs _s = [SS.c-error_ s, S2.errormsgs-s, S4.err-cr_msgss,

Sn.error_msgs_ sj

CONCEPT formal-_name formal !arguments where VALUE value arg-uments where
fujncticns, defined with preconditions and postconditions

SS.l'ocal -types _s = 7 string :UNDEFINED_TYPE) 1;

passu-p_ I(S2, xref_ value);

SS.d 'error s = c~eck cc lp'exdecl(SS.i'p_m-,xref_ I, S2.name text s,
S3.nane_ fargs_ s, S2.line_- s, SS.stbl _ names_ i);

r~kcornp~exdecl)ZS.tp -mcmxref, $$.d -error -s, S2.name text s.

S2.xref value _s, $3.name_ farqs _s);

syrz-:l- trle

S2.args: = 5.aras-text s;

141

passovrI($2, $6, xref_value);
stbl _build5(S2, Sj, $4, $6, $7);
passdnstbl5(S2, $3, $4, $6, $7);

!visibility information.
passdn_2($2, visible types, visible_names);
passovr_2($2, $3, visible types, visible_names);
passovr2x_2($3,S4,S6, visible types, Visible_names);
passovr-2($6, $7, visible types, visible names).

?error messages -- incomplete for now...
$$.error_msgss - t $$.d_error_s, $2.error_msgs_s, S3.error_msgs_s,

$4.error_msgs_s, $6.errormsgssa, $7.error msgs a);

value arguments a new nonterminal to simplify equations.
formal_arguments

!symbol table
passiol_3)51, ip_ stbl_class, ipstblnames, ipstblparams);
passdnl(SI, ipstbl_result);
S$.ipstbl result_s =($l.args text a =

->$l.ip stbl result_s
$l.ip stbl result -s +1

(($$.xref value i:
~(,$l.args-text-s, 9" H

passdnstbl($1);

visibility information
passiol._2)$!, visible types, visible names);

error messages
passupl(Sl, error msgs);

model' data types have conceptual models for values
MODEL forrral_arguments invariant

stbl _build2(S2, $3);
passdncstbl2($2, $3);

visibility information
passiol_2)52, visible types, visible names);
passovr_2(S2,$3, visible types, visible_names);

error messages
$S.errormsgss =)$2.error_msgs_s, S3.error_msgs_si;

state machines have conceptual models for states
S7AwE formal arguments invariant initially

stbl _baild3 ($2 $3, $4)
passdr _stb:3 ($2, $3, 34)

142

visibility information
passiol _2(S2. visible types. visible names);
passovr2x_2(S2,s3,$4, visible_types, visible_names);

!error messages
SS.trrormsgss [$2.errormsgss, $3.errormsgs_a, $4.error msgs a);

invariant invariants are true for all states or instance&
INVARIANT expression _list

stbl _buildi ($2);
paSsdn_ stbll(S2);

!visibility information
passdn_2(S2, visible types. visible names);

!error_messages
passupi ($2, error msgs);

iitially initial conditions are true only at the beginning
INITIALLY expression_list

stbl buildl ($2);
passdn-stbll($2);

visibility information
passdn_2($2,visible types, visible names);

lerror messages
passup~ (S2, error_msgs);

transactions
transactions transaction

stbi build2(Sl, $2);
passdn_ stW2(SI, $2);

visibility information
passio2_2(Sl,S2,visible types, visible_names);

error messages
SS.error_msgs_s = 1Sl.error_msgss, S2.error_msgs_s);

s tbl buildOU);
pasticC _2(visible types, visible_names);

error messages

SS.Irrcr msgs s=

irasacin

143

TRANSACTION formal-name EQUAIS action list where

S2.argsi
$2.env-i =TRANSACIION_CLASS;

!symbol table
stbl build3(S2, $4, $5);
passdnstbl3($2, $4, W5;

visibility information
passdnl($2, visible types);
S$.d error-s = check simple_decl(S$.visible_names_i, $2.name_text_s,

S2.line_s, $S.stbl_names_i);
mksimple_decl($$.visible-names_i, SS.d_error_s, $2.name_text_s,

S2.xref_value_s, S$.visible-names_s);
passovr2x_l($2, $4, $5, visible types);
passovr2x_l($$, $4, $5, visible_names);

!error messages
$$.error msgs s = [$2.errormsgss, S4.error_msgs_s, $5.error_msgs_sl;

*Transactions are atomic.
*The where clause can specify timing constraints.

action list
action-list ';' action %prec SEMI sequence

stbl build2(Sl, $3);
passdn_stbl2($1, S3);

visibility information
passdn2_2(Sl, $3,visible types, visible-names);

error messages
$S.error_msgs_s = [$I.errormsgss, S3.error_msgs 5];

I action

s tbl build ($1);
passdn-stbl11Si);

visibility information
passdn_2($1, visible types, visible_names);

error messages
passup_1(Si, error msgs);

act ion
action action %prec STAR unordered set of actions

stbi build2(S1, $2);
passdn_ stbl2(Sl, S2);

visibility information
passdn2_2($:, $2, visible types, visible_names);

error messages

144

$S.error_msgs_ s - Sl.error_msgs_s, S2.error_msgssj;

I IF alternatives FI choice

3 tbl _buildl(S2);

passdn_ stbll($2);

visibility information
passdn_2(S2, visible types. visible-names);

!error messages
passupi ($2, error msgs);

DO alternatives 0D repeated choice

s tbl buildl($2);
passdnstbll ($2);

!Visibility information
passdn_2(S2, visible types. visible-names);

error_messages
passupi ($2, error-msgs);

I actual-name a normal message or subtransaction

s tbl buii-M($);
passdn_stbll (SI);

visibility infcrmation
passdn 2(S!, visible types, visible-names);

!erroz messages
passupl(SI, error_msgs);

IEXCEPTION actual-name an exception message

s tbl _buildl(S);

passdnstbll ($2);

visibility information
passdn._2(S2, visiblet wes, visible names);

error messaaes
passjp_:(S2, error msos);

alternatives
alternatives OR guard action list

stbl build3(Sl, S3, $4);
passdn_stb!3(SI, $3, $4);

visibility information
passan3 _ 2)51, $3, $4, visible types, visible_names);

error messages
SS-errwr nsgs s = [Sl.error rnsgs _s, $3.error_rnsgs_ s, S4.errcr n-sos sj

145

Iguard action-list

stbl build2(Sl, $2);
passdn-stbl2(Sl, $2);

visibility information
passdn2_2($l, $2, visible_types, visible-names);

!error messages
$$.error_msgs_s - (Sl.error-msgs_s, $2.error_msgs_s);

guard
WHEN expression ARROW

stbI buildl($2);
passdn-stbll ($2);

visibility information
passdn_2($2, visible types, visible-names);

error messages
passup_l($2, error msgs);

stbl-buildOO);

!error messages
SS.error_msgs_s

tempo r a Is
temporals temporal

stbl-build2($l, $2);
passdn-stb12($1, $2);

visibility information
passio2_2(Sl, $2, visible_types, visible-names);

error messages
$$.error_msgs_s = [$.errormsgs-s, $2.error_msgs_s];

stbl _buildO();
passioO_2(visible types. visible_names);

error messages
SS.errormsgss =f

temporal
TEI-ORAL NAME where response

SS.xref value-s = ge:_new xref(S2.%:.ext);

146

S4.xref-value i - 5.xref-value_s;

symbol table
$3.ipstbl_class_i - SS.ip_stbl_class_i + 1

f($S.xref-value-s :TEMPORALCLASS));
S3.ip_stbl_names_ i -S$.ip_stbl_names_ i +1

{($S.xref-value-s :$2.%text));
passovr_2(S3, $4, ip_atbi_class, ipsatbl_names);
passup_2(S4, ipstbl_class, ip_stbi_names);
passio2_2(S3, $4, ipstblparams, ipastbi_result);
passdnstbl2 (S3, $4);

'visibility information
passdn2l1(S3, $4, visible_types);

ssderror-s = check-simple-decl($S.visible-names-i, $2.%text,
S2.%line, $$.stbl names_i);

mksimple_decl($$.visible-names_i, $S.d_error_s, $2.%text,
S$.xref_value_s, SS.visible-names-s);

passovr2x_l(SS, $3, $4, visible_names);

error messages
SS.errormsgss = [S$.d_error_s, $3.errormsgss, $4.error_msgs_s3;

*Temporal events are trigged at absolute times,
*in terms of the local clock of the actor.
*The "where" describes the triggering conditions
*in terms of TIME, PERIOD, and DELAY.

optional-formal name
formal _name

passup_3(Sl, name_params, name_text, line);
passan_2(Sl, args, env);
passupl(Sl, xref_value);

symbol table
stbl buildl)Sl);
passdr'.stbll (SI);

visibility in~formation.
passiol_2(SI, visible types, visible names);

error messages
pass~p_(SI, error msgs);

SS.line_ s = -1;
SS.name params_s=
SS.name_text s -
SS.xref-value s =get_new_xref($S.args_i);

symbol table

ado eley(SS.ip_ stbl_class_ i, S$.xref -value s, SS.env_ i, $$.ip_stbl _class_ s);
addelem(SS.ip_ s0:l_names_ i, SS.xref-value-s,$.argsi, SS.ip atbl names s);
passio_2(ipsoblparams, ip_ stbl _result);

147

!visibility information
passioO_2(visible types, visible_nae5);

error messages
SS.errormsgss

formal-name
NAME formalyparameters

$$.line -s - S1.%line;
SS.name-text s - Sl.%text;
passupl(S2, name_params);
$S.xref-value-s get-new-xref($l.%text);

!symbol table
$S.signature-a C S.args_i -

[""$$.argsi, "")

add -elem($.ipstbl-class-i, SS.xref-value-s, $S.env-i, $2.ipstblclassi);
add-elem(SS.ip stbl-names-i, SS.xref-value-s,

$l.%text ^SS.signature~z, $2. ipstblnames-i);
add-elem($$.ip_stbl_params_i, S$.xref-value-s, $2.name_params_s,

S2 .ipstblparamsi);
passdnl (2, ipstbl -result);
passup_4($2, ip_stblel--ass, ipstblnames, ipstkbl_params, ipstblresult);
passdn-stbll(S2);

!visibilihy information
passiol-2($2, visible types, visible-names);

error messages.
passup1l($2, error-msgs);

formai parameters parar'eter values are determined at specification time
If field_ list I)' where

SS.name_parans s = $2.fieldpatter. s;

I.Symbol table
stbl -build2(S2, $4);
passdn_ stbl2($2, $4);

!visibility information
passiol_2($2, visible types, visible-names);
passovr_2(S2, $4, visible_types, visible-names);

error messages.
$S.errormsgss = $2.error_msgs-s, $4.error-msgss;

S$.name_parars_s =NULL-STRING;

symbol table

stobouildZ ()

148

!visibility information
passioC_ 2(visible types, visible_names);

!error messages
$S.error_msgs_s ffl

formal_arguments arguments are evaluated at run-time
Ufield_ list '

S$.namefargss $ 2.fieldpattern_s;
$S.args_text_s =$2.text _s;

!symbol table
stbj._buildl(52);
passdn_stbll($2);

visibility information
passiol_2(S2, visible types, visible-names);

error messages
passup_ 1(52, error msgs);

SS.name_fargs_s
SS.args text s

!symol table
stbl-buildOWl

visibility information
passioC_2(visible types, visible names);

error messages
SS.error_msgs_s

field list
field-list '..' field

$S.fieldpattern s =[Sl.fieldpattern_s, ELEM_DELIM.UTER,

$3. fieldpattern_s);
$S.text _s -(Sl.text _s, -,, 3.teXt_3);

symbol table
stbl _build2(Sl, $3);
passdn-stb!2(Sl, $3);

!visibility information.
passio2_2(51. $3, visible types, visible_names);

error messages
SS.errorrsgss = S$1errormsgss, S3.errormsgs_s);

149

passup_2(Sl, fieldpattern, text);

!.-ymbol table
stbl buiidl)$l);

passdn-stbll (Si);

!Visibility information
passiol_2(Sl, visible types, visible-names);

!error messages
passupi ($1, error msgs);

field
declname-list ' :1 type spec

$l.name type_text_i - S3.type name text 5;
$$.text-s = [Sl.text-s, " : , $3.type_name_text 5];

Sl.name -tvoe -value_j - S3.type_name_value_s;
passupi (Si. fieldpattern);

symbol table
stbl-build2(Sl, S3);
passdn_ stbl2(Sl, $3);

visibility information.
passiol_2(Sl, visible types, visible -names);
passdn_2(S3, visible_types, visible names);

!error messages
SS.errormsgss = C$l.error_msgs_ s, $3.error_msgs s];

S$' NAME ':' type_spec

s =]S", 2.%text, ":",S4.type name_value s I
$S-text-s = ["S". $2.%text,, ", 4.type-name-text-sD'

!syntbzcl table

SS.xref-value_s = get -new -xref(S2.%text);
add-elem)SS.ip-stbl class -i, $S.xref-value-s, VARIABLECLASS,

S4.ipstbl _class _i);

add-elem(SS.ipstbl -names_ i, SS.xref-value-s, "S"-S2.%text,
$4.ipstbl -names i);

add-elemr(SS.ipstbl -result -i, SS.xref_val'ue_s, S4.type_name_value_s,
$4.ipstbl Iresult_ i);

passdn-l(S4, ipstblparams);
passup_4(S4, ipstbl_class, ip-stbl-names, ipstbl _result, ipstblparams);
passdn-stbll ($4);

visibility information
SS.visi'b.e_types_s = (S4.type_name -value-s - SPECLIBRARY MODULE type)

-> SS.visible_types_ i +1

(S$2.%text :[S2.%text. @"

"local"]))
0 SS.visible types_.J

SS.d error-_s = check_ siimple_dcl (S$ visib Ie_ r .nes i, S2 Atext,
S2.ine,S.sc_ ae

150

mk-si-mple_deci_ io($S.vi'si'ble-names, $S.d-error-s, S2.%text, $SI.xref value-s);

passdinl)S4, visible_types);

passovr-l)$$, $4, visible_names);

.error messages

SS.error_msgs_s = !SS.d-error_ r, S4.error_msgs-s);

i QUESTIONMARK

SS.fieldpatterns=

$S.texts =_s "

!symbol table

stbl _buildO ();

visibility information
passio0_1(visible_types);

error messages

SS.error_msgs_s error-message (UNREPSOLVED_TYPE, S1.*line);

type spec

actual-name name of a data type

S$.type_name_text_s =Sl.actual Iname -texts;

SS.type name va-lue s = SSvisible types-i (Sl.actual-name text s);

!symbol table
stbl _bujldl)Sl);

visibility information

pass&n.2($l. v~s-'ble types, visible-names);

:error messages

SS. rp ms = error_message (UNDECLA-3EDTYPE, $l.line 5.

S:.actual-name_text -s);

SS.error_mrsgs_ s =(SS.vi'sibe_types_. i (SI-actual name tex: 5) =

U NDEF:NED TYPE)
->SS.tmp_mrsg

QU;ES7 ION-MARK

SS.type_- name text -s-

$S.type n-are value s-

symbol table

error messages
SS.errcr mras s = error mnessage (UNRESOLVED -TYPE, SI.%line);

151

*This structure was added so that a name list used for declarative
*purposes (e.g. in a field) could be easily distinguished from a name list
*used in an applicative structure (e.g. imports, export, hide).
*This lessened the actual attribute load of the name-list structure.

deciname-list
declname-list NAME

SS.xref_value_s - get_new_%ref(;?. %text);
S$.texz _a - [$l.text-s, " ", $2.%text];
passdn 12(S1, name -type value, name type_text);
$$.fieldpatternas - I Sl.fieldpattern -a, ELEM_-DELIMITER,

S2.ttext, ":", $S.name_type_value_i 3;

!symbol table
passdn_4(Sl, ipstbl_class, ipastblnames, ip_stbl_result, ipstblparams);
add-elem(Sl.ip stbl_class_s, SS.xref-value-s, VARIABLECLASS,

SS.ip_stbl_class_s);
add _e&m(Sl.ip stbl_names_s, $S.xref Ivalue-s, $2.%text, $$.ip_stbl_names-s);
add_elem(Sl.ipstbl_result_s, $S.xref-value-s, $$.name_type_value_i,

SS.ipstblI result-sI;
pass-upl($l, ipstbl_paramns);
passdn-stbll ($1);

visibility information
passdn-2(Sl, visible types, visible-names);
$S.d-error-s = check_simple_decl($l.visible -names-s, $2.%text,

S2.%line, $S.stbl names i);
mic-simple_decl(Sl.visible-names-s, $S.d-error-s, $2.%text,

$S.xref -value-s, $$.visible_names_sI;
SS.visibletypess =(S$.name Itype text_i -- SPEC_LIBRARYMODULE type)

$1 S. visible_types s +1
)($2.%text :[$2 .%text, ""

-local"])
S..visibletypess;

SS.errormsgss - [Si.errormsgss, $S.d-errorsl

INAME

SS.xref-value_s = get -new -xref (SI. %text);
SS_.ieidpattern_s = [Sl.%text, ":", SS.name _type_value _ 1;
SS.text _s = $!.%text;

symbol table
add -elem (SS.ipstbl' class 4, SS.xref -value -s, VARIABLE_-CLASS,

SS.ipstbl classs);
add -elem(SS.ip stbl names i, $S.xref -value-a, Sl.%text, SS.ip_stbl_names 5);

add_elem(SS-ipstbl_result_i, SS.xref-value-s, SS.name type_value_i,
$S.ipstbl result_- s);

passioOl(ip_stbl_params);

visibility information
!-- eventually need to make local with module name ...

SS.visibletypess = (SS.namne_type_text i -= SPECL7BRARYMODULE type)

-> $S. visible_typesi +i

. -local" I))
*SS.visible_ types_.

152

SS.a-error-s = check simnple_decl(SS.visible_names_i, Sl.%text,
$!Aline, SS.stbl names_ i);

mksi-rple decl io($S.visible-narnes, SS.d-error-s, Sl.%text,

SS.xref-value_s);

SS.error msgs s = S.d error s;

name list

name list NAME

optional_actual name

actual-name

passup_4(Sl. actual-name-text, actual_params, full-name, line);

visibility information

passdn_-2(Sl, visible types, visible names);

.errcr n-essages
passu-p_ 1(Sl, error msgs);

SS.i'ne_ s -;
SS.actual _name text s=
SS.actual _params_s=
SS.fulllname s

stbl build ,();

'error messages
SS.error_msgs_ s=

actual name
NA~act aI -_parameters

SS.actual-name-text _s - SI.text;
SS$l ne s = Sl.%line;
pass.;p_ 1($2, actual params);

SS........are s =(S2.actual params-s =

- Sl.text
*[Sl.%text, "(", $2.actual _params_ s, .).1;

synnolc tacl-e
st-bl buil-dl(S2);

passd-stb:'(S2);

153

!visibility information
passdn_2(52, visible types, visible-flames);

error mes sages

passup_ 1(52, error_mnsgs);

actual_parameters parameter values are determined at specification time
{arg list'

$S.actualsparams_s = $2.arglist text_a;

a tblbuildi
($2);

passdn-stbll ($2);

visibility information

paasdn_2)52, Visible types, visible-names);

error messages

passupi ($2. error msgs);

%prec SEMI must have a lower precedence than'

$S.actual _params s

stbl _buildO));

error messages
$$.error_msgs s=

actua. arg-uments arguments are evaluated at run-time
4arg_ list ''

$S.fullargss = (S2.argliJsr_text _s = "

*PU,$2.arglist-text-s, (;

stbl'b, bildl ($2) ;
passdn-stb'l($2);

visibility information

passdn_2)52. visible types, visible-names);

error me ssage s
passupI($2. error mags);

I iprec SEMI must have a lower precedence than'

s tbl buildO));

error messages
S$.error_msgs_ s=

arc - at

asog l:st ',' arg %pren CO?'.A

154

$S.arglist text s = '$I.arglist text a, ACTUALDFLj., S3.arg text s-;

stbl builci2(SI1, $3) ;
passdi-_s"bll (SI-, $3);

visibility information
passdrn2_2($l, $3, visible types, visible-names);

error messages
$S.errormsgss = [$l..error_rnsgs_s, S3.error-msgs_ a);

arg

SS.argIl st _text_s = SI.arg text a;

stbl-build: (SI);

passdi _stb.l (Sl);

visibility information
passdn_2(S1, visible types, visible namnes);

errcr_rnessaoes

passu-pl)SI, err-or msgs);

arg

expresslon

SS.arg text s = S--xter._types;

stbl bujldl(SI-);
passot. stbzll' ($-)

.vtsibil ity -Jform-aticn
passdir_2(SI, v~sible types, visible names);

error_nessage:;

pass,-pl,(Sl, errorrrsos);

SS.ara-text.s S-. xten-_types;

'tbl bid(S-);

vlsibility in~formation
passd: _2($:, vis:Jnle types, visible names);

error messages
passuplI(SI-, error _msgs);

exprTess-on. St
express-cnli St ',, expression %prec COMM'A

a- types 4n- an' expression list must be the same
s -SI.x--en ypes;

155

st-b. obu:1d2 (S, S3);
passdn-stbl2($', $3);

visib'ility information
passdn2_2(Sl, $3, visi4ble types, visible-names);

error messages
$S.errormsgss = ($l.error_msgs-s, $3.errormsgs_sl;

I expression %prec COMMA

passupi ($1, xten type);

stbl-buildi (Si);
passin-stbll ($1);

!visibility information
passdn-2($l, visible types, visible-names);

error_messaqes
passup. (SI, error msgs);

express ion

quantifier ' (' field list restriction BIND expression''

$S.xten_type_s = ":boolean";

stbl _build3 (S3, $4, $6);

passdn-stb13($3, $4, $6);

visibility information
passdn.3_2(53, $4, $6, vi-si'be_types, visible-names);

error messages
$S.errormsgss = [$3.error_mrsgs-s, S4.errormsgs_s, $6.errormsgss-,;

iactual-name actual _argumnents

$S.xten_type_s = (RFF SYM3OL, Sl.ful name-s, $2.full_args_s>;

stbl build2f$l, $2);
passdn-stbI (Sl, $2);

visibil:ity -information
passdn2_2($l, $2, visible types, visible-names);

!error messages
$$.errormsgss = [$l.errormsjs-s, $2.error_msgs_ sJ;

I actual-name ' actual-name actual arguments

S$.xten_type_s = [REF_7SYMBOL, $l.fu.7l-name s, "@", $3.full-name s,
S4.fuI _ args sl;

sttl -build3 (SI, $3, S4);
passnstl3 (.,$3, S4);

156

visibility information

passbdn3 _2(S', $3, $4, visible_types, visible-names);

error messages
$S.error_msgs_ s = [$l.error_msgs_s, S3.errormsgss, S4.errormrsgss.

INOT expression %prec NOT

$$.xten_types = [REFSYlBOL, Sl.%text, '(", $2.xien_type-s,)]

stbl _buildl ($2);
passdn-stb11($2);

!visibility information
passdn-2($2, visible types, visible-names);

!error_messages
passup l($2, error msgs);

I expression AND expression %prec AND

$S.xten_type_s = [REFSYMBOL, $2.%text, "(", $l.xten type 5,

ACTUALDELI,S3.xten_type-s, ")" 1;

passdn-stb'2 ($1, S3);

visibility information

passdn2_2($., $3, visible types, visible-names);

'error messages
SS.error_msgs_ s = [Sl.error_msgs_s, $3.error_msgs_sl;

expression OR expression %prec OR

SS.xten type s = [RF_-SYk3OL, $2.*text, "(", Sl.xten type 5,

ACTUALDELIM, 3.xten_type s, " J;*

passin-sttl2)Sl, S31);

visibil ity inforrration

passo 2-2($., S3, vl's.'le types, visible-names);

error ressages

SS.error _,nsgs_ s = [$!.error msgss, S3.error msgs s];

Iexpression IMPLIES expression %prec IMPLIES

$$.xtentypes = (REFSYMBOL, S2.%text, "(", Sl.xten_type_s,

ACTUAL DEL1M.$3.xtentype-s, ""]

strl -b-i d2 (S', $3);
passdn.s-.b12)Sl, $3);

v's'b.:.y informat- on

passor.-2 _2 (SI, $3, vislble types, visible_ names);

errsr messages
- -- '.err _nszs s, S$3.errcr -sgs s

157

I expression 1FF expression %prec 1FF

$S.xten-type s =[REF_-SYMBOL, $2.%text, "(", Sl.xten_type_s,
ACTUALDELIM,$3.xtentypes, "]

sibl _build2(Sl, $3);
passdn-stbl2(Sl, $3);

visibility information
passdn2_2(51. $3, visible types, visible-names);

!error messages
$S.errormsgss - [Sl.error-msgs_s, $3.error-msgs 8);

I expression LT expression %prec LE

$$.xten-type-s = [REFSYMBOL, " , (,$l.xten typea,
ACTUALDELIM,$3.xten type a, ""

stbl-build2(Sl, $3);
passdn-stbl2($l, $3);

visibility information
passdn2_2(51, $3, visible_types, visible-names);

error messages
$$.errormsgss = [$l.error_msgs_s, $3.error_msgs 5];

1 expression GT expression %prec LE

S$.xten_type_s - [REFSYMBOL, ">", "(", $l.xtentypes,
ACTUALDELim,$3.xten type s,)"]

Stbj. bUild2($1, $3);
passdr._ stbl2($l, $3);

!visibility information
passdn2_2(Sl, $3, visible types, visible-names);

error messages
SS.errormsgss = [Sl.errormsgss, S3.errormsgs_s3;

expression EQUALS expression %prec LE

SS.xten_type_s - [REFSYMBOL, =" ($1.xtentypes,
ACTUALDELIM,S3.xtern-type-s, ""3

stb. _build2($1, $3);
passdn.-stb!2($l, S3);

!visibility information
passdn2_2($1, $3, visible types, visible-names);

errcz mntaages
SS.error_msgs_s = [$l.errormsgss, S3.errormsgs_s];

express~or LE expression %prec LE

S$.xten type_ = [REFSYMBOL, S2.%text, "(", Sl.xtentypes,
ACTU',AL ZELIM,53.xtentype-s, ")" 1;

158

passdn_ stbl2(S1, S3);

visibility information
passdn2_2(S1, $3, visible_types, visible_names);

error messages
$$.errormzsgs_- - $.ro~~5~5 3.errormsgs_5)3;

I expression GE expression %prec LE

SS.xten types - [REFSYMBOL, S2.%text, "(", Sl.xten_type_s,
ACTUALDELIM,$3.xten_type_a,) ;

stbl build2(Sl. $3);
passdn-stbl2(Sl, $3);

!visibility information
passdn2_2($l, $3, visible types, visible_names);

error messages
SS.errormrrsgss = [Sl.error-msgss, $3.error_msgs s);

expression NE expression %prec LE

$.titype_s = [REFSYMBOL, $2.%text, "(", Sl.xten_type_s,
ACTUAL_-DELIM,$3.xten-type-s, ""1

stb.'_buil'd2(Sl, $3);
passdinstbl'2(Sl, $3);

!visibility information
passdn2_2(SI, $3, visible types, visible-names);

error messages
$$.error_mnsgs_ s = [$l.errormsgss, $3.error_msgs 5);

expression NLT expression %prec LE

$S.xter type s = rREFSYMBOL, $2.%text, "(", $l.xten type s,
ACTUAL DELIM,$3.xten_type_s, ";

stb. b.;'id2 (S1, $3);
passa- _stbl2(SI, $3);

vis ibi I :ty information
passdn2_2($l., $3, visible_types, visible-names);

erro: messages
$$.errcr rrnsgs s = [$I.errormsgss, $3.error_msgss);

expression NGT expression %prec LE

SS.xtentypes = [REFSYMBOL, S2.%text, "(", Sl.xten_type_a,

ACTUAL DELIM,S3.xten_type-s,

st-b' build2(SI-, $3);
passd._ stb12($1, S3);

159

passdin2_2(Sl, $3, visible types, visible-names);

!error messages
SS.errormsgss - [Sl.error_s~gs_ a, $3.error-msgs_a);

I expression NLE expression %prec LE

SS.xten-type-a - [REFSYMBOL, S2.%text, *(u, Sl.xten type_a,
ACTUALDELIM,$3.xten-type-a,)"]

atbi-build2(Sl, $3);
passdn-stbl2($l, $3);

!visibility information
passdn2_2($l, $3, visible_types, visible-names);

!error messages
SS.error-msgss - [Sl.error_msgs_a, $3.error_maga a];

I expression NGE expression %prec LE

$S.xten_type_s =[REFSYMBOL, S?.%text, "(", $l.xten_type_s,
ACTUALDELIM,S3.xtentype-s, ""1

stbJ._build2($1, $3);
passdn_ stbl2($i, $3);

!visibility information
passdn2_2($l, $3, visible_types, visible-names);

error messages
$S.error_msgs_s = [$1.error_msgs-s, S3.error_msgs_s3;

expression EQV expression %prec LE

S$.xten type s = [REFSYMBOL, $2.%text, "(", $l.xten_types,
ACTUALDELIM,S3.xtentype-s, "nJ

stbl-build2($l, $3);
passdn-stbl2($1, $3);

visibility information
passdr.2_2(Sl, $3, visible types, visible-names);

error messages
$S.errormsgss = [$l.errormsgss, $3.error_msgs 5];

I expression NEQV expression %prec LE

$S.xten_type_s = [REF -SYMBOL, $2.%text, "(", l.xten_type_s,
ACTUALDELIM,S3.xten-type-a,) J

stbl-build2($l, $3);
passd- slbl2(S', $3);

visibilil-y information
passdn2_2(SI, S3, visible types, visible_names);

error messages
SS.errormsgss - [Il.error _msgs_ s, $3.errormsgs_s];

160

MINUSMARX expression %prec UMINUS

SS.xten_types = [REF_SYMBOL, $-,"" 2.xten_types,)J

stbl btuildl ($2);

passdnstbll ($2);

!visibility information
passdn_2(S2, visible types. Visible_names);

!error_messages
passupi ($2, error msgs);

expression PLUSMARX expression %prec PLUS

S$.xten_types - (REF_SYMBOL, $1(,S.xten_types,

ACTUALDELIM,$3.xten-type-s, "~1

stbJ._build2(Sl, $3);

passdn-stbl2($l, $3);

visibility information
passdn2_2($1, $3, visible types, visible_names);

error messages
$S.errormsgss = [$l.errormsgss, $3.error_msgs_a];

1expression MINUSMARK expression %prec MINUS

SS.xten_types - [REF_SYMBOL, "-", "J", $l.xten_types,
ACTUALDELIM,$3.xten type s, '"1

stbl build2(Sl, $3);
passdnstbl2(Sl, $3);

visibility information

passdn2_2($l, $3, visible types, visible_names);

error messages

$S.error_msgs_ a = [$i.error_msgss, S3.error_msgs_sl;

expression STARMARK expression %prec MUL

SS.xter._type_s = [REF_SYMBOL, "" (,$l.xten_type_s,

ACTUALDELIM,S3.xten type a, ""]

stbl _build2($1, $3);

passdnstbl2(Sl, $3);

!visibility information

passdn2_2($1, $3, visible types, visible_names);

error messages

S$.errormsgss = [$!.error_msgss, 53.error_msgs_s];

expression~ SLASH expression %prec DIV

SS.xtentypes = jREFSYMBOL, ", U,$l.xten_types,

ACTUAL ZEL:X,S3.xte._ type_ a, ")" 1

161

stbl-build2($', $3);
passdn-stbl2(Sl, $3);

!visibility information
passdn,2_2(SI, $3, visible types, visible-names);

!error messages
S$.errormsgss = [$l.errormsqss, $3.error-mogs_s];

Iexpression MOD expression %prec MOD

S$.xten_type_a - [REF_-SYM~BOL, S2.%text, "(", $l.xten type a,
ACTUAL DELIM,S3.xtentypes.)*

stbl build2(Sl, $3);
passdn-stbl2 ($1, $3);

!visibility information
passdn2_2(Sl. $3, visible types, visible-names);

error messages
$S.errormsgss = [Sl.error_msgss, $3.error_msgs_s];

Iexcpression EXP expression %prec EXP

$S.xten types = [REFSYMBOL, S2.%text, "(", Sl.xten type a,
ACTUAL DELIM,S3.xten type s, ""3

stbI _build2(Sl, $3);
passdn_ stbl2(Sl, $3);

!visibility information
passdn2_2(SI, $3, visible types, visible-names);

error messages
S$.errormsgss = [SI.error_msgss, S3.error_mnsgs_sj;

expression U expression %prec U

$S.xtentypes = [REFSYMBOL, S2.%text, "(", SI.xten type a,
ACTUAL D)ELIh,S',3.xtentype-s, n"3

stbl-build2(s:, $3);
passdn_ stbl'2($1, $3);

visibility information
passdn2-2($l, $3, visible types, visible-names);

!error messages
$S.errormsgss - [$l.error_msgss, S3.error_msgs_ sJ;

expression APPEND expression %prec APPEND

SS.xten_type_s - [REFSYMBOL, $2.%text, "(", Sl.xten_type_s,
ACTUAL -DELIM,$3.xten_type-s, ")" 1;

stb b,,ild2(! (S$3);

passd'._stbl2($'., $3);

162

passdn2_2($1, $3, visible types, visible-names);

error messages
SS.error_msgs_s = [Sl.error-msgs_s, S3.error_msgs_s];

iexpression. IN expression Jkprec~ IN

$S.xtentypes = [REF_SYMBOL, $2.%text, (", Sl.xten type_s,
ACTUALDELIl4,$3.xten_type_s,) J

stbi-build2(Sl, $3);
passdnstbl2 ($1, $3);

visibility information
passan2_2(Sl, $3, visible types, visible-names);

error messages
$$.errormsgss = [Sl.error-msgs_$, S3.error-msgs_sJ;

ISTAR1MARK expression %prec STAR
*x is the value of x in the previous state

SS.xten.types = S2.xten_type_s;

stbl _buildl(S2);
passd.-.stbJ (S2);

visibility information
passo' _2(S2, visible_types, visible-names);

error messages
passup_1($2, error_msgs);

t'S' expression %prec DOT
Sx represents a collection cf items rather than just one
s= ix, $s2) means sl = union({x), s2)

s-. = (x, Ss2", means sl = append([x], s2)

SS.xten types = 2.xten type s;

passdn_ stn'--'(S2);

visibi:14ty informat ion
passar_ 2($2, visible types, visible names);

error_messages
pass-upl(S2, error_msgs);

i expression~ RANGE expression %prec RANGE
x in a . . bi iff x in Ia . . b) if! a <- x <- b

a.. b! is sorted in increasing order

SS.xt-er_type_ s REF_SYM2OL, s2.%text, "("l, $i..xten type_s,
AC-TUAL -DEL-IM,S3.xten_type_s, J

~ssdr _ szrl2 (S, S3;

163

visibi.4ity information
passd.2 2(S1, S3, visible types, visible-names);

!error messages
S$.error_msgs_s = [Sl.error_msgs_s, $3.error_msgs_sl;

I expression DOTMARK NAME %prec DOT

SS.xten types - [REF_-SYMBOL, ". C" 1.xten_type_*,
ACTUALDELIM, "\, 3.%text,"\1", I)"];

stbl buildi ($1);
passdnastbill($1);

!visibility information
passdn-2 (S, visible types, visible-names);

!error messages

passupi (Si, error msgs);

I expression LBRACK expression ']' %prec

$S.xten_type_s = (REF_-SYMBOL, S),"(,$.xten_type_s,

ACTUAL DELIM, S3.xtenotype~sD

St~b! build2 (Sl, $3);
passdn-stbl2(S1, $3);

visibility inform-aton

passdn2_2%$SI, $, v-s-ble_types, visible names);

!error messages
SS.errormsgss = [Si.errormsgss, S3.error_msgssj;

V(expression*)

passupl1(S2, xten-type);

stbl _buildi (S2);
passdn-stbl (52);

!visibility information
passdn-2(S2. visible types, visible-names);

error messages
passupi ($2, error msgs);

(' expression NAME 'Pexpression with units of measurement
standard time units: NANOSEC MICROSEC MILLISEC SECONDS MINUTES HOURS DAYS

WEEKS

passupl ($2, xten type);

stbl _buildi ($2);
passdn_ s*bhl1(S2);

!visibility information

passdn_2(S2, visible types, visible_names);

164

error mes sages
passup_' (S2, error_rrsgs);

TIME The current local time, used in temporal events

$S.xten type a ":real";

sibi-buidO;

!error messages
S$.error_msgs_s

IDELAY The time between the triggering event and the response

$S.xten type a ":real";

stbl _buildCO;

!error messages
$$.error_msgs_s

PERIOD The time between successive events of this type

SS.xter._t,,pe_ s =":real";

stbi buildO));

erroL messages
S$.error_msgs_s

litera.-

passup_ l(Sl, xten type);

passd. _ stbll(Sl-);

v _4s -4 _4ty in format-ion

Pass-_2(51-, visible types, visible names);

.error_-essages
pass',p_ 1($1, error_mags);

literal 1@' act.al-name literal with explicit type

!*unsre about this one.

passup, ($1, xten type);

passcc_ s~b12(SI, $3);

* v~~z~l~y ifor' at- cn
passor'2 _2(Sl, $3, visible types, visible-names);

.errcr ressages
SS.errc: _m-sqs _ t'$ S.er-ror_rsgs_ a, $3.error-msgs_ s';

-A7. ;7-ef.nec va," e tc be specif .et late:

165

SS.xtern_type_s ":;

stbl-buildOO);

!error messages
$$.error_msgs_s=

I ' I'An undefined and illegal value

$$.xten_type_s I:"

sibi-buildO(i;

!error messages
S$.error_msgs_s=

I IF expression THEN expression middle_cases ELSE expression F1

$S.xten_type_s = S4.xten_types;

stbl-build4(S2, S4, $5, $7);
passdn_ stbl4($2, $4, $5, $7);

visibility information
passdn4_2($2, $4, $5, $7, visible types, visible_names);

error messages
$$.error_msgs_s = [$2.error_msgs_s, $4.error_msgss,

$5.error-msgs_s, S7.error msgb sj;

mtiddle-cases
middle-cases ELSE_IF expression THEN expression

stbl-build3($l, $3, $5);
passdn_ stbl3(Sl, $3, $5);

visibility information
passdn3_2(S1, $3, $5, visible types, visible_names);

error messages
$$.error_msgs_s = [$l.errormsgss, $3.error_msgss, $5.errormsgssl;

s tbl _buildOO);

!error messages
SS.errormsgss

quant fier
ALL

166

ISUM

IPRODUCT

ISET

IMAXIMUM

I MINIMUM

UNION

I NTERSECTION

restriction
SUCH expression

stbl-buildi ($2);

!visibility information
passdr.2(S2, visible types, visible-names);

error mne ssages
passupi ($2, error msgs);

s tbl _buj JjdD (I

!error messages
S$.errormrsgss "

INTEGERLITERAL

SS.xten-types = ":integer";

stbl buildO));

!error messages
SS.errormsgss=

REALLITERAL

SS.Xten_type_s =":real";

stbl _buildO();

error messages
SS.errcrmsgss

CFAP -L:TERA-

S$.Xtenrtypes = ":char";

167

error messages
SS.errormsgs~s

I STRINGLITERAL

SS.xten types " :string";

sibl-buildOfl;

error messages
S$.error_msgs_s

1 '0' NAME enumeration type literal

SS.xten-type-s - ";enumeration";

stbJ._buidO;

!error messages
SS.errormsgss

LBRACK expressions J'sequence literal

SS.xten types = ":sequenoce{",S2.xten_types, };

stbl _buildi ($2);
passan-stbll(S2);

visibility information
passor._2(S2, visible types. visible-names,;

error-messao.es
passujo_l ($2, error msgs);

'expressions 'Vset literal

SS.xten-.types = [(set!", $2.xte. types, }J

stbl bui'ldl ($2);

passdn_ stbj!(S2);

visibility information

passdn_2($2, visible_types, visible names);

error messages
passup_ 1(S2, error msgs);

'expressions ';' expression ''map literal

SS.xtentypes = ["map(", $2.xten_type_s, ACTUALDELIM,
S4.xtentypes, "J");

stbl _build2(S2, $4);

passdn-stbl2($2, $4);

visibility information

passar.2 _2(S2, S4, vible types, v~s ,le nanes);

168

er:ror messages
S$-erro: :nsqs_ s S2.error msgs s, S4.error msgs_ s];

LB.RA.:" pa'rlist tuple literal

SS.xten types "tuplej", S2.xter._type_s, ")

stbl _build'($2);
passdr _stbll(S2);

!vislbilz-ty inlr.! rration
passdn 2($2, visible types, visible-names);

errcor-messages
passup_(S2, error rrsgs);

1 Pair Ii, one-of literal

SS.xte._ type_ s= S2.type_ s;

So _ '' brd(S2);

passr- _stbll.(S2);

:v -4s ibhili4t-y I rfo r-at : on
oassar._ 2(S2, vis-'.etypes, visible names);

* error-messages
pass-,p- _ I(S, errcr_ m.sgs)

re at -or -trS are sets of troples

exp tessics

pass-p- (S'. xter t ype);

lrfralcn
passo--2%S- v r-De _ ypes. vL51le rames);

e:,-rrr essaqeS

* err rsqs);

169

pair1 is-,
pair list ',' pair

$.xter'_type_s - [$l.xten_typeS, PAIR_DELIM, $3.xten_types);

stbl _build2(Sl, $3);
passdnstb!2 ($1, $3);

visibility informaticn
pa~adn2_2($l, $3, visible_types, visible_names);

error messages
S$.errormsgss - [$l.error_msgs_s, $3.errormsgs_s];

INAPE pair

$S.xten type s = (S1.%text, "::", S2.types, PAIR_DELIM, S2.xten type_s);
stbl _buildl(S2);
passdn_stbll(S2);

visibility information
passdn_ 2($2, visible types, visible names);

error_messages
passupl($2, error msgs);

pair

passupi ($1, xten type);

stbi build:($);

passdn_stbll ($1);

visibility informtion

passdn_2($l, visible types, visible names);

error messages

passupl!(Sl, error msgs);

pair

NAE BIND expression

$$.xten types = [S2.0ext,", S3.xte-typesj
SS.type_s = $3.xten type~s

stbi buildl 3);

passdnstbll ($3);

visibility informaticn

passdn_20(3, visible types, visible names);

error messages

passp_!$3,error msgs);

170

operatcr list operator_ synmbol

passon_ 3(s:-, xrefvalue, message_ fargs, iprncmxref);

passdinstbil);

SS.d-error-s = check com-plex_decl(SS.ip_mncmxref_±, S2.operatcr_text _s,

$S.message_ fargs_ i, S2.line-s, SS.stbl_namnes i);

modified version of #mk_complex-decl

$S.ip-mojnxref-s = ($$.d-error a -- NU LSTRING)

-> (S1.*pmcmxrefs ($2.operator_text_a) -- NULL_STRING)

->(S2.operator-text-s :[SS.message_ fargs_ i,

XCREF_-DELIMITER, 12s(S$.xref-value-i))H) 41

Sl.ip_mcmxr-ef_s

' 1(S2.operator_ text_ s :[S1.ipmcmxret_s
(S2.operator_text-s),

PATTERNDELIMITER, SS.mesaagefargsi,
XREFDELIMITER, 12s($$.xref-value-i)]J)) +1
$l.ip-mcmxref-s

'#' Sl.ip_mcinxref_a;

error messages
SS.error mrsgs s = Sl.e ror_msgs_ a, SS.d-error_ a);

operator symool

SS.errcrrsgss = check_comnplex_decl(SS.ipmcmxref -i, $l.operator_text s,

$$.messagefargsi, Sl.line -a, SS.stbl -names_- i);
mk complex de- ISS-ip_mrcrrxref, SS.errormsgss, Sl.operatcr text -S.

SS.xref value_ , SS.message_ fargsi);

operator syr-,bc-

SS.operator text s =S'.%-ext;

SS.>'-e s =S:.%l:ne;

ANt

SS.cpera~cr text s $!S.%text;

SS.operatcrtext s $:S.%text,

SS.llres = SlA--ce;

S5.cpera--: text s = SI.%text;

SS.1r~e s = SAie

171

SS.operator_text _s "<n

SS.Ii4ne s = S. .%JIine;

$S.operator_text_s
$S.line-s -S1.%Xine;

I EQUALS

$$.operator_text s
$$.Iine-s = S1.%line;

I LE

SS.operator_text_s = $!.%text;
$$.line s -S1.%line;

GE

$$.operator_text_s =$1.%text;
S$.line_ s = $1.%lirie;

NE

SS.operator_text_s -S1.%text;
SS.line-s = $1.%line;

N'-T

$S.operator_text_s - S'.%text;
SS.Iine s =$!%ie

INGT

SS.operatcr_text_s S1.%text;
SS.li-ne_ s =S.~r

NLE'

SS.operator_text _s =Sl.%text;

SS.Iirne s = S!.%ie;

NGE

S$.operator_text_s = S1.%text;
$S.line_ S = $l.%line;

EQV

$S.operator_text _s = $1.%text;
SS.iine_ s = Sl>%hne;

iNEQV

SS.operatcr text s = $!.%text;
SSIire s = Si-.%,line;

172

p7 LUS MARK

$S.operator_text s=

$$.zn.re_ s = S-%ie

NTN U SMARK

$$.operator_text -s=

$$-line s = $!.%line;

I STARMARX

$S.operator_texta

$$.line-s = $l.%Iine;

ISLASH

$5-operator text a s l/l

$$.line-a = $l.%line;

MOD

$S.operator_text _a = Sl.%text;

$$.line-a = $!.%line;

EX?

$$.operator_text_ a = S:.%text;
ss.Iine-a = Sl.%Iine;

$S.operator_text _ a $!S.%text;

AP PEND

S$.operator text as = SI.%text;

SS.'Ine_ s =$-%ie

SN

S$.operator text a = $!..%text;
SS.lute s = SI.%Iine;

RANGE

$S-operator_text_ a = $!.%text;
SS.line a = Sl.%iine;

D MARK

S$.operator text as

.ARACK

SS-tperatcr text a

173

APPENDIX C - SYNTACTIC ERROR PRODUCTIONS.

This Appendix contains the syntactic error productions that were developed for

version 1.5 of the SPEC grammar. This version was five versions prior to the version

used for the type checker, but the methodology used to implement the error productions

is fully applicable to the newest version of the grammar. For the type checker to be a

fully functional tool, these error productions must be integrated into the final product. In

this way, syntactic and semantic errors could be identified concurrently.

version stamp $H-eader: spec.k,v 1.5 88/02/16 13:27:58 berzins Exp $

in the grarmar, comments go from a "!" to the end of the line.
Terminal symbols are entirely upper case or enclosed in single quotes ()
Nonterminal symbols are entirely lower case.
Lexical character classes start with a captial letter and are enclosed in {}.

In a regular expression, x+ means one or more x's.
in a regular expression, x* means zero or more x's.
In a regular expression, [xyz] means x or y or z.
In a regular expression, [^xyz] means any character except x or y or z.
In a _egular expression, [a-z] means any character between a and z.
in a rec iar expression, . means any character except newline.

definitions of lexical classes

%define Digit : [0-9)
%define r.t : {Digit)+
%hef;ne Letter : [a-zA-Z]
%oefine Alpha :({Letter)DigitV" ")
%define Blank : [\t\n
%define Q-ote :

%define Bacxslas:"
%aef-ne Cnar : (^"\\! {Backslash} {Quote})Backslash} {Backslash})

- ef -ni.io'ns of white space and comments

:{Blank)+

definitions of compound symbols and keywords

AN', :
CR -" "

NOT "

I E :" =

GE : ">="

NE •" -

NL:

174

NLE

NGE
EOV .- .
NEQV

RANGE ... H
A-'?END :-I !"

McO :(Backslash IMOD
EXP

BIND:.

ARROW

IF :IF
THEN :THEN
ELSE :ELSE
IN :IN
U :U

ALL :ALL
SOME :SOME
NUMBER :NUMBER
sum :SUM
PRODUCT :PRODUCT
SET :SET
MAXIMUM :MAXIMJM
MIN IMUM :MINIMUM
UNION :UNION
INTERSECTION :INTERSECTION
SUCH :SUCH{Blankl}THAT
ELSEIF :ELSE{Blank}t IF

AS :AS
CHOOSE :CHOOSE
CONCEPT :CONCEPT
DEFINITION :DEFINITION
DELAY :DELAY
DO :DO
END :END
EXCEPTION :EXCEPTION
EXPORT :EXPORT

:FI
FOREACH :FOREACH
FROM :FROM
7 'NCTION :FUNCTION
GENERATE :GENERATE
HIDE :HIDE
... ...T :IMPORT
INHERIT :INHERIT
INIT:ALLY :INITIALLY
INSTANCE :INSTANCE
INVARIANT :INVARIANT
ITERATOR :ITERATOR
MACHINE :MACHINE
MESSAGE :MESSAGE
MODEL :MODEL
OD :OD

:OF
OPERATOR :OPERATOR
OTHERWISE :OTHERWISE
PERIC: ER

175

RENAME :RENAME

REPLY :REPLY

SEND :SEND

STATE :STATE
TEMPORAL :TEMPORAL

TIME :TIME

TO :TO
TRANSACTION :TRANSACTION

TRANSITION !TRANSITION

TYPE :TYPE
VALUE :VALUE

VIRTUAL :VIRTUAL

WHEN :WHEN

WHERE :WHERE

SECONDS :SECONDS

MINUTES :MINUTES

HOURS :HOURS

DAYS :DAYS
WEEKS :WEEKS

NANOSEC :NANOSEC

MICROSEC :MICROSEC

MILLISEC :MILLIStC

INTEGER_ LITERAL :{Intl

REALLITERAL :(Int}"."(Int}

CHAR LITERAL :'"'

STRINGLITERAL :{Quote)}Char}*{Quote}

NAME :(Letter)(Alpha)*

* operator precedences

* %left means 2+3-4 is (2+3)+4.

%left '' IF, DO, EXCEPTION, NAME, SEMI;

%left ',', COMMA;

%left SUCH;

%left IFF;

%left IMPLIES;

%left OR;

%left AND;

%left NOT;

%left '<', '>', '=', LE, GE, NE, NLT, NGT, NLE, NGE, EQV, NEQV;

%nonassoc IN, RANGE;

%left U, APPEND;

%left '+', '-', PLUS, MINUS;
%left ''', 'I', MUL, DIV, MOD;

%left UMINUS;

% left EXP;

%left '' ' ', ' (', '', '.', DOT, WHERE;
%left STAR;

rd%

!attribute declarations

* productions of the grammar

start

spec

176

spec
spec module

I spec error module

A production with nothing after the "I" means the empty string

is a legal replacement for the left hand side.

module
function

machine

type

I definition

instance of a generic module

funct ion
optionally virtual F!NCTION interface messages concepts END

optionallyvirtual FUNCTION error messages concepts END

optionally virtual FUNC-O, interface error

Virtual modules are for inheritance only, never used directly.

machine
cptionallyvirtual MACHINE interface state messages transactions temporals

concepts END

optiona1 ~yvirtua1 MACHINE error state messages transactions temporals concepts

END

:oraIy v~r'a" MAC:N'- :r-erface error

177

type
optionallyvirtual TYPE interface model messages transactions temporals

concepts END

I optionallyvirtual TYPE error model messages transactions temporals concepts END

I optionally virtual TYPE interface error

definition

DEFINITION interface concepts END

DEFINITION error concepts END

DEFINITION interface error

instance

: optionallyvirtual INSTANCE parametrized_name '=' parametrizedname hide
rena-nes END

optionalyvirtual INSTANCE error '=' parametrizedname hide renames END

cptonally_virtual INSTANCE parametrizedname error END

optionallyvirtual INSTANCE parametrized_name '=' error END

optionally_virtual INSTANCE parametrized name '= parametrized name error

For making instances or partial instantiations of generic modules,
and for making interface adjustments to reusable components
by hiding or changing some names.

178

interface
NAIE fcrmal_parameters innerits imports export

This part describes the static aspects of a module's interface.

The dynamic aspects of the interface are described in the messages.

A module is generic iff it has parameters.

The parameters can be constrained by a WHERE clause.
A module can inherit the behavior of other modules.
A module can import concepts from other modules.

A module can export concepts for use by other modules.

inherits

inherits INHERIT parametrized name hide renames

i inherits INHER:T error

ancestors are generaliz.Lic-s or simplified views of a module

an actor inherits all of the behavior of its ancestors

nide
H:DE nare list

error

Useful for providing limited views of an actor.

.... eren, user classes may see different views cf a system.
Messages anc concepts can be hidden.

renanes
renames RENAME NAME- AS NAME

renaes RSNAMB error AS Nk-L

renares RENA- NkA error Nk-%

179

' renames RENAME NAME AS error

Renaming is useful for preventing name conflicts when inheriting
from multiple sources, and for adapting modules for new uses.
The parameters, model and state components, messages, exceptions,
and concepts of an actor can be renamed.

imports
imports IMPORT name list FROM parametrized name

I imports IMPORT error FROM parametrized-name

imports IMPORT name_list error parametrized_name

I imports IMPORT namelist FROM error

export

EXPORT nare list

EXPORT error

messages
messages message

message
MESSAGE messageheader operator response

MESSAGE message-header error

180

response
response body

Iresponse cases

response cases
WHEN expression_list response body response cases

1OTHERWISE response body

iWH1EN error response_body response cases

I WHEN expression_11'st response body error

OTHERWISE error

response body

opt _c-hose opt _rep-y opt_sends opt_transition

opt _choose

CHOOSE ('fleld i-st restriction)

CHCEerror fielcilist- rest-riction

CHOOSE ' 'error

~HOOS ' field list restototion error

opt _reply

REPLY rressage heaoer wmere

ressaoe neader w.re:e -.;sec :r tteratrrs

opt sends
sends

sends
sends send

send

send
SEND message header TO parametrized name where foreach

i SEND mnessage_header error parametrized name where foreach

*SEND message_.header TC error

* transitfton

transittion.

TRANSITION expression list for describing state changes

TRANSITION error

message-header
optional _exception. optiona _ nane fcrrnal arguments

wne rc

Sext reSsrr S

182

%prec SEM: must have a lower precedence than WHERE

WHERE error

optionally virtual

VIRTUAL

optional_exception
EXCEPTION

%prec SEMI

operator

operator OPERATOR operator list

operator OPERATOR error

foreach

:ORZACH '(' field list restriction ')'

FOREACH error

FOREACK '(' error

FOREAC is used to describe a set of messages to be sent.

183

concepts
concepts concept

concept
CONCEPT NAME formalparameters ' :' type spec where

constants

I CONCEPT NAME formalparameters formalarguments where VALi f -a
where

functions

I CONCEPT error for-al_,i'amet-r frta1_ar',pt .
where

CONCEPT NAYE error VALUE formal arguments where

CONCEPT NAMM error ':' type_spec where

CONCEPT NA1xE formalparameters ':' error

I CONCEPT NAMe_ formal parameters formal_arguments where VALUE error

model data types have conceptual models for values

MODEL formal_arguments invariant

MODEL formal-arguments invariant initially

initially clause specifies automatic variable initialization

I MODEL error invariant initially

I MODEL formalarguments invariant error

state machines have conceptual models for states

STATE formal arguments invariant initially

1 STATE error invariant initially

STATE fornalarguments invariant error

I 84

invariant invariants are true in all states

:INVARIANT expression_list

INVARIANT error

initially initial conditions are true only at the beginning

INITIALLY expression-list

I INITIALLY error

transacuions

transactions transaction

transaction
TRANSACTION parametrizedname '= actionexpression where

TRANSACTION error =' action expression where

TRANSACTION parametrizedname error

I TRANSACTION parametrized_name '=' error

Transactions are atomic.

Tne where clause can specify timing constraints.

action expression
actionexpression ';' acLionlist %prec SEMI sequence

action list

I action_expression '' error

action -ist
action iist action-list %prec STAR parallel

185

1F alternatives F1 choice

i Do alternatives 00 repetition

I parametrized_name a normal message

I EXCEPTION parametrized-name an exception message

I IF error F!

DO error OD

EXCEPTION error

IF alternatives error

I DO alternatives error

alternatives
alternatives OR guard action-expression

I guard actionexpression

I alternatives OR error

guard
WHEN expression ARROW

IWFN error ARROW

WHEN expression error

terpora s
temporals temporal

186

temporal

TEMPORAL NAME where response

I TEMPORAL error

I TEMPORAL NAME error

Temporal events are trigged at absolute times,

in terms of the local clock of the actor.

The "where" describes the triggering conditions

in terms of "TIME" and "PERIOD".

formal_parameters ! parameter values are determined at specification time

U field list '!' where

'{' error '}' where

i' field list error where

formalargurents arouments are evaluated at run-time

: field list

(' error '3'

3' field >:si error

field ilst

field list ' field

field

*ield list ', error

187

Ierror ''field

field
name_list ' type spec

I $' NAMIE :typ>e spec

Iname list ':1 error

I IS' error ':' type_Spec

1 1$' NAM E error type spec

I''NAM[E ' error

Iname-list error type_spec

type spec
parametrized-name name of a data type

ITYPE actual parameters

I FUNCTION actual parameters

MACHINE actualparameters

IITERATOR actual parameters

name- list
name_-list NAM E

*NAME

188

opr:ona -name

NAME formal parameters

parametrized_name

NAME actualparameters

actualparameters parameter values are determined at specification time

'{' arg_ list '}'

I %prec SEMI mus' have a lower precedence than ' {'

{ error ')'

'{' arglist error

actual arguments arguments are evaluated at run-time

:' arg list 'I'

tprec SEMI must have a lower precedence than '

(' error

(' arglist error

argliist

argis arg %prec COMMA

I arg

I arg_list ',' error

arg

expression

pair

189

expresson_list

expressionlist ', expression %prec COMMA

I expression

I expression list ',' error

I error ',' expression
{ I

expression
quantifier '(' field list restriction BIND expression ')

parametrized_name actual_arcuments

parametrized_name '@' parametrized name actualarguments

I NOT expression %prec NOT

expression AND expression %prec AND

expression OR expression %prec OR

expression IMPLIES expression %prec IMPLIES

expression IFF expression %prec IFF

I expression '<' expression %prec LE

expression '>' expression %prec LE

expression '=' expression %prec LE

expression LE expression %prec LE

190

expression GE expression prec LE

expression NE expression %prec LE

I expression NLT expression %prec LE

Iexpression NGT expression %prec LE

I expression NLE expression %prec LE

expression NGE expression %prec LE

I expression EQV expression %prec LE

expression NEOV expression %prec LE

-expressicn %prec UM.INUS

expression '-' expression %prec PLUS

expressio-n '-' expression %prec MINUS

expression ~ express-or, %prec MU'-

expression NG expression %prec DIV

expression MOD expression %prec MOD

expression EX expression %prec EXP

expression U expression %prec U

191

expression APPEND expression %prec APPEND

I expression IN expression %prec IN

I '' expressicn %prec STAR
'x is the value of x before a transition
x is the value after the transition

1$' expression %prec DOT
$x represents a collection of items rather than just one

s' = ix, $s2) means sl - union({x), s2)
sl = [x, 5s2] means sl - append([x, s2)

expression RANGE expression %prec RANGE
x in [a .. b' iff x in 'a .. b) iff a <= x <- b

a b] is sorted in increasing order

I expression ' ' NAME %prec DOT

expression '' expression '% %prec DOT

U expression ')'

(' expression units ')' timing expression

The current local tine, used in tenpera events

DELAY The time between the triggering event and the response

PERIOD The time between succ isive events of this type

i literal

literal'@' parametrizedname literal with explicit type

An undefined value to be specified later

192

I An undefined and illegal value

:F expression THEN expression middle-cases ELSE expression F!

expression '>' error

error '' expression

quantifier '(' error

quantifier error

quantifier '(' field list restriction BIND error ')'

parametrizea name '@' error

NCT error

- error

error

'S' error

error

!F error THEN expression middle cases ELSE expression F!

iF expression THEN error niddle cases ELSE expression F:

:F expression THEN expression middle cases ELSE error

"ireral '@' error

'(' expression units error

7idc0 cases
:ooe cases ELSE_ F expression THEN expression

-oie '-ases ELSE hF errcr

193

miadle-cases ELSE-IF expression THEN error

qua nt if ier

ALL

SOWME

INUM8ER

I sum

PRODUZ7

SE-

MAX MUim

MN!KN: MU

U N:OI')N

:.N-ERSEC7:CN

restrict ion

SUCH expression

SUHerror

194

:NEGERLI:ERA-L

RZA*L L:TERAL

ICHAR_LITERAL

STR:NGL:TERAL

I* NkMS enumeration type literal

express~o-.s :'sequience literal

1 expressncrs I'set literal

{expression ';' expressions ' map literal

7pair hit'- tuple literal

'pair 'Vone of literal

''errcr

errc- 'r

exp!ressio.- errcr '

pa;.r -s: eIzror

7expresr. . st error

re~a~i). - ra. s are sets of tuples

C xpres5s - ons

expression:1s

195

pairlist
pair_ list ',' pair

f NAME pair

I pair

I pair list ',' error

pair
NAME BIND expression

NAME BIND error

S

NANOSEC

MICROSEC

M:LLISEC

SE ENO

SECONDS

I MINUTES

I HOURS

DAYS

WEEK S

196

operator_ list operator sym-bol

oper at o rsyrbo I

I operator_lIist error operator symbol

Operator symLbo.,
NOT

AND

OR

I PLI E S

LE

197

NLT

I NLE

INGE

I EQV

NEQV

LX?

IAPPEND

l N

RAN-,--

198

199

APPENDIX D - TYPE CHECKER ATTRIBUTES.

This Appendix contains a list of all of the attribute descriptive names used in the

implementation of the type checker with their purpose. This list is not all encompassing.

Various attributes that are slight variations of the below named attributes have been left

out. All of the attributes not included have an "ip" prefix with a "main" name

corresponding to a name listed below.

Attribute Name Attribute Purpose

%line A Kodiyak predefined attribute yielding the line number
in the source text of a terminal symbol.

%text A Kodiyak predefined attribute yielding the actual text
of a terminal symbol.

actualnametext The actual text of an actual name.

actua-params The actual parameters associated with an actual name.

actualtext-s The actual text associated with a non-terminal.

arg-text The text of an arg non-terminal.

arglistjtext The text of an argument list (arglist) non-terminal.

args-i The arguments associated with a particular non-
terminal. This attribute is commonly used in the formal
name non-terminal to obtain the arguments associated
with the name so a "pattern" may be created.

d_error_s An attribute containing an error message relating to the

declaration of a new name (if any such error exists).

envi The current environment of a non-terminal.

error-msgs This attribute contains all error messages identified in
the current and children non-terminals.

200

fieldpattem The string containing the non-terminals name and it's
type, separated by a predefined delimiter.

global-type A map containing all global type names and their
translation.

ipjlclzd-mcmxref A localized attribute containing the same information as
the mcmxref attribute. Used in the final stages of layer
2 to integrate ip-mcmxref attributes from different
modules.

ipmcmxref A map containing all module, message and concept
names. This map is used in layer 2 to build the layer 3
attribute "stbl". The range of the map contains patterns.

ip-mxref A map which is being constructed to contain all module
names. The range of the map contains the module
names pattern and cross reference. This map is used in
layer I to obtain information needed in the layer 2 table
"ip-mcmxref'.

local-typess The type names that are local to a non-terminal.

line The line number associated with a non-terminal.

message-names The text of a message's name.

message-fargs-s The text of the formal arguments of a message.

mod-types A localized map containing the type names and their
translations that are visible. This table and the
global-type" attributes are used to build the

"visibletypes" map.

modulename The name of the current module.

mxrefvalue The cross reference value of the current module.

namejfargs The formal arguments associated with a name.

name-text The text associated with a formal or actual name.

name-typetext The text of a name's type.

name typevalue The translated value (obtained from the visible types
table) of a name's type.

201

L i

name-params The parameters associated with a formal or actual name.

operator-text The text associated with an operator non-terminal.

signature The signature (name and arguments) of a non-terminal.

stbl_class Classes of all names used (e.g. Function, Message, etc.)
Accessed by the cross reference value of the name.

stblnames All names used throughout the program. Accessed by a
cross reference value.

stbl-params The formal parameters of a name (if any). Accessed by
a cross reference value.

stblresult The resultant type of a name. Contains extended type
information. Accessed by the cross reference value of
the name.

text The text of a non-terminal.

type-nametext The text of a type-spec's name.

type-namevalue The translated value of a type-spec.

type-tablei A map coalescing the contents of the "mod-types" and
"global-type" tables.

visible-names A map containing all names visible.

visible-types A map containing all type names visible.

xrefvalue The cross reference value of the current name.

xten_type_ The extended type of a non-terminal.

202

REFERENCES.

1. Berzins, V., and Luqi, Draft of Software Engineering with Abstractions: An
Integrated Approach to Software Development with Ada. Addison-Wesley, 1988.

2. Weigand, J. Design and Implementation of a Pretty Printer for the Functional
Specification Language SPEC, M.S. Thesis, Naval Postgraduate School, June, 1988.

3. Berzins, V., and Gray, M., "Analysis and Design in MSG.84: Formalizing Functional
Specifications," IEEE Transactions in Software Engineering, v. 11, pp. 657-670,
August 1985.

4. Johnson, S., YACC--Yet Another Compiler Compiler, Bell Laboratories, Murray Hill,
NJ, July 1978.

5. Farrow, R. "Generating a Production Compiler for an Attribute Grammar,"
IEEE Software, v. 1, pp. 77-93, October 1984.

6. Herndon, R. Attribute Grammar Systerns for Prototyping Translators and
Languages. Ph. D. Dissertation, University of Minnesota, 1988.

7. Nicholas, C. Assusring Accessibility of Complex Software Systems. Ph. D.
Dissertation, University of Ohio State, 1988.

8. Aho, A. and Ullman, J., Principles of Compiler Design, p. 58, Addison-Wesley,
1979.

9. Knuth, D. "On the Translation of Languages from Left to Right," Information and
Control, v. 8, pp. 607-639, 1965.

10. Brooks, F. "The Mythical Man-Month," Datamation, v. 20, No. 12, pp. 44-52,
December 1974.

11. Verner, J and Tate, G., "Estimating Size and Effort in Fourth-Generation
Development", IEEE Software, pp. 15-22, July 1988.

12. Penello, T. "Very Fast LR Parsing," Conference Record of the 9th AnnualACM
Symposium on Principles of Programming Languages, pp. 224-233, 1982.

13. University of Helsinki Technical Report A-1978-2, The Compiler Writing System
HLP, by K. Raiha, M. Saarinen, E. Soisalon-Soininen, and M. Tienari, March 1978.

14. Lorho, B. "Semantic Attribute Processing in the System Delta," Lecture Notes in
Computer Science, v. 47, pp. 21-40, Springer-Verlag, 1977.

203

IILII

15. Ganzinger, H., Ripken, K., and Wilhelm, R., "Automatic Generation of Multipass
Compilers," Information Processing 77, Proceedings of IFIP Congress 77, pp. 535-
540, North-Holland Publishing Co., 1977.

16. Milton, D., Kirchhoff, L., and Rowland, B., "An ALL(1) Compiler Generator,"
Proceedings of the SIGPLAN '79 Symposium on Compiler Construction, ACM
SIGPLAN Notices, v. 14, No. 8, pp. 152-157, August 1979.

17. Kastens, U., Hutt, B., and Zimmerman, E., "GAG: A Practical Compiler Generator",
Lecture Notes in Computer Science, v. 141, Springer-Verlag, 1982.

18. Bell Laboratories Computer Science Technical Report 39, Lex - A Lexical Analyzer
Generator, by M. Lesk and E. Schmidt, October 1975.

19. Naval Postgraduate School Technical Report NPS52-89-029, A Student's Guide to
SPEC, by V. Berzins and R. Kopas, May 1989.

20. Naval Postgraduate School Technical Report NPS52-87-032, The Semantics of
Inheritance in Spec, by V. Berzins and Luqi, July 1987.

21. Beebe, D. The Design and Implementation of a Syntax Directed Editor for the
Specification Language Spec, M.S. Thesis, Naval Postgraduate School, June, 1989.

204

BIBLIOGRAPHY.

Adorni, G., Boccolatte, A., and Di Manzo, M., "Top-Down Semantic Analysis",
Computer Journal, v. 27, August 1984.

Berzins, V., Gray, M., and Naumann, D., "Abstraction Based Software Development",
Communications of the ACM, v. 29 No. 5, pp. 402-415, May 1986.

Booch, G., Software Engineering with Ada, 2nd edition, Benjamin/Cummings, 1987.

Cleaveland, Craig. "Building Application Generators," IEEE Software, v. 14
pp. 25-33, July 1988.

Farrow, R., "Generating a Production Compiler for an Attribute Grammar," IEEE
Software, v. 1, October 1984, pp. 77-93.

Fisher, A., CASE, Using Software Development Tools, John Wiley & Sons, Inc., 1988.

Herndon, R. and Berzins, V., "The Realizable Benefits of a Language Prototyping
Language", IEEE Transaction on Software Engineering, v. 14, June 1988, pp. 803-809.

MacLennan, B., Principles of Programming Languages: Design, Evaluation, and
Implementation, 2nd edition, Holt, Rinehart & Winston, 1987.

Naval Postgraduate School Technical Report NPS52-87-033, Specifying Large Software
Systems in Spec, by V. Berzins and Luqi, July 1987.

Naval Postgraduate School Technical Report NPS52-88-007, Generating a Language
Translator based on an Attribute Grammar Tool, by LuQi and R. Herndon, April 1988.

Naval Postgraduate School Technical Report NPS52-88-038, Languages for
Specification, Design and Prototyping, by V. Berzins and LuQi, September 1988.

Reps, Charles. Generating Language-Based Environments. Ph. D. Dissertation,
University of Massachusetts, Amherst, 1983.

University of Minnesota Computer Science Department Report Technical Report 85-25,
AG: A Useful Attribute Grammar Translator Generator, by R. Hemdon and V. Berzins,
July 1985.

205

University of Minnesota Computer Science Technical Report 85-37, The Incomplete AG
User's Guide and Reference Manual, by R. Herndon, October 1985.

206

INITIAL DISTRIBUTION LIST.

1. Ada Joint Program Office
OUSDRE (R&AT)
The Pentagon
Washington, D.C. 20301

2. Commanding Officer
Naval Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

3. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

4. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Squires
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

5. Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

6. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

7. Defense Technical Information Center 2
Cameron Stztion
Alexandria, Virginia 22304-6145

8. Dr. Amiram Yehudai
Tel Aviv University
School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

207

9. Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

10. Fleet Combat Direction Systems Support Agency
Attn. Mike Reiley, Code WOT
San Diego, California 92147-5081

11. Fleet Combat Direction Systems Support Agency
Attn. George Roberson, Code 8D
San Diego, California 92147-5081

12. International Software Systems Inc.
12710 Research Boulevard, Suite 301
Attn. Dr. R. T. Yeh
Austin, Texas 78759

13. Kestrel Institute
Attn. Dr. C. Green
1801 Page Mill Road
Palo Alto, California 94304

14. L. Robert Kopas
Department Head School Class 110
Surface Warfare Officers School Command
Newport, Rhode Island 02841-5012

15. Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square
Atn. Dr. B. Liskov
Cambridge, Massachusetts 02139

16. Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
545 Tech Square
Attn. Dr. J. Guttag
Cambridge, Massachusetts 02139

17. MCC AI Laboratory
Attn. Dr. Michael Gray
3500 West Balcones Center Drive
Austin, Texas 78759

18. Office of Naval Research
Computer Science Division, Code 1133
Attn. Dr. R. Wachter
800 N. Quincy Street
Arlington, Virginia 22217-5000

208

19. Office of the Secretary of Defense 1
R & AT/S & CT, RM 3El 14
STARS Program Office
Washington, D.C. 20301

20. Oregon Graduate Center
Portland (Beaverton)
Attn. Dr. R. Kieburtz
Portland, Oregon 97005

21. Software Group, MCC
9430 Research Boulevard
Attn. Dr. L. Belady
Austin, Texas 78759

22. University of Pittsburgh
Department of Computer Science
Attn. Dr. Alfs Berztiss
Pittsburgh, Pennsylvania 15260

23. Purdue University
Department of Computer Science
West Lafayette, Indiana 47906

24. The Ohio State University
Department of Computer and Information Science
Attn. Dr. Charles Nicholas
2036 Neil Ave Mall
Columbus, Ohio 43210-1277

25. Berzins 4
Code 52Bz
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

209

L

